m-Sectorial Operators Associated with The Sesquilinear Forms $t[u,v] = (Tu, v)^*$

Ali Sameripour

Research supported by Lorestan University, Khorramabad, Iran

Abstract: Let h be a densely defined, closed and symmetric form that is bounded from below, and let $H = T_h$ be the associated self-adjoint operator, the relationship $h[u, v] = (Hu, v)$ that connecting the form h with the operator H is unsatisfactory indeed it is not valid for all $u, v \in D(h)$ because $D(H)$ is in general a proper subset of $D(h)$. In this paper, we will study the relation between the m-sectorial operators and the sesquilinear forms $t[u, v] = (Tu, v)$. Moreover, here we will discuss an interesting concepts of sectorial operators; m-sectorial operators and the concept of Friedrichs extension along with an important example.

Key words: resolvent, asymptotic spectrum, eigenvalues, non-self adjoint Elliptic Differential operators

INTRODUCTION

We consider the sesquilinear form t defined on a subspace L of a separable Hilbert space H. The sesquilinear form $t[u, v]$ ($u \in L, v \in L$) is given such that:

$t: L \times L \rightarrow \mathbb{C}$.

The form $t[u, v]$ is said to be a sesquilinear form if it satisfies the following conditions:

$t[\alpha u, \beta v] = \alpha \beta t[u, v]$ ($\alpha, \beta \in \mathbb{C}, u, v \in L$)

$t[u_1, u_2, v] = t[u_1, v] + t[u_2, v]$ ($u_1, u_2, v \in L$)

$t[u_1 + u_2, v] = t[u_1, v] + t[u_2, v]$ ($u_1, u_2, v \in L$)

Thus $t[u, v]$ is complex valued and linear in $u \in L$ for each fixed $v \in L$ and semi-linear in $v \in L$ for each fixed $u \in L$. Here L will be called the domain of t and is denoted by $D(t)$ and is densely defined in H i.e., $D(t)$ is dense in H. A form t is said to be symmetric if

$t[u, v] = t[v, u]$ ($u, v \in D(t))$.

With each form t associate another form t^* which is defined by:

$t^*[u, v] = \overline{t[v, u]}$ ($D(t) = D^*(t)$)

t^* is called the adjoint of the form t, the form t is symmetric if and only if $t = t^*$. Let us now consider a non-symmetric form t. The set of values of the form t:

$t[u] = \{t[u, v] : u \in D(t) = L : \|u\| = 1\}$

is called the numerical range of t and will be denoted by $\Theta(t)$, the form t is said to be sectorial if $\Theta(t)$ is a subset of a sector of the form.
Here γ and θ will be called a vertex and a semi-angle of the form t respectively.

We denote the inner product and the norm of H by (\cdot, \cdot) and $\|\cdot\|$. If $t(u, v)$ is a sectorial form then there exist numbers m and $\delta > 0$ such that for each $u \in D(t)$ the following inequality satisfies

$$\|t[u, v]\| \leq M \Re t(u, v) + \delta \|u\|^\frac{1}{2}.$$

We define the following norm in the space $D[t]$

$$\|u\| = (\Re t[u, v] + \frac{\delta}{M} \|u\|^\frac{1}{2})^\frac{1}{2}.$$ \hspace{1cm} (1.1)

If in such norm the space $D[t]$ is complete (i.e. to be a Banach space) then the sectorial form $t[u, v]$ is called closed form. The following theorem is one of the basic theorems of the theory of m-sectorial forms;

An operator T in H is said to be accretive if the numerical range of T which will be denoted by $\Theta(T)$ is a subset of the right half-plane, that is if

$$\Re \Theta(T) = \{\Re \Theta(t) \in \mathbb{R} : \Re \Theta(t) > 0\}.$$

Then T is said to be m-accretive if for $Re \lambda > 0$, $||T + \lambda I|| \leq (Re \lambda)^\frac{1}{2}$ the operator T is said to be quasi-accretive operator if the numerical range $\Theta(T)$, is not only a subset of the right half-plane, but it must be a subset of a sector of the form

$$\mathcal{S} = \{\zeta \in \mathbb{C} : \arg(\zeta - \gamma) \leq \theta \}, \quad 0 \leq \theta < \frac{\pi}{2}, \gamma \in \mathbb{R}.$$

We define the following norm in the space $D[t]$

$$\|u\| = (\Re t[u, v] + \frac{\delta}{M} \|u\|^\frac{1}{2})^\frac{1}{2}.$$ \hspace{1cm} (1.1)

If in such norm the space $D[t]$ is complete (i.e. to be a Banach space) then the sectorial form $t[u, v]$ is called closed form. The following theorem is one of the basic theorems of the theory of m-sectorial forms;

Theorem 2.2. Now we discuss on the relation between the m-sectorial operators and the sesquilinear forms. Let the form $t[u, v]$ be a densely defined closed, sectorial and sesquilinear form in H, then there exist an m-sectorial operator T such that

(i) $D(T) = D(t)$ and $t(u, v) = (Tu, v)$. For every $u \in D(T)$ and $v \in D(t)$

(ii) $D(T)$ is a core of t;

(iii) if $u \in D(t)$ and $v \in H$ and $t(u, v) = (w, v)$ holds for every v belonging to a core of t, then $u \in D(T)$ and $Tu = w$.

The m-sectorial operator T is uniquely determined by the condition (i) and the domain of T is $D(T)$, such that the elements of $u \in D(T)$ satisfy the following inequality

$$\|t[u, v]\| \leq M \|v\|, \quad (v \in D(t)).$$

Notice that by using the above inequality and the density property of $D(t)$ in H there exists a continuous functional $\ell : H \to \mathbb{C}$ such that

$$\ell(v) = \overline{t[u, v]} \quad (v \in D(t)).$$
By using Riesz representation theorem there exists a unique element \(g \in H \) such that for all \(v \in H \) we have \(\langle v, g \rangle \), i.e., \(\langle u, v \rangle = \langle g, v \rangle \), for all \(v \in D(t) \), that implies \(g = T u \).

Theorem 2.3. Let \(h \) be a densely defined, closed and symmetric form that is bounded from below, and let \(H = T \) be the associated self-adjoint operator. The relationship \(h[u, v] = (Hu, v) \) connecting the form \(h \) with the operator \(H \) is unsatisfactory indeed it is not valid for all \(u, v \in D(h) \) because \(D(H) \) is in general a proper subset of \(D(h) \). A more complete representation of \(h \) is furnished by the following theorem.

Theorem 2.4. Let \(h \) be a densely defined, closed and symmetric form, such that \(h \geq 0 \), and let \(H = T \) be the associated self-adjoint operator, then we have \(D(H^+) = D(h) \) and so

\[
1 \cdot h[u, v] = (H^2 u, H^2 v), \quad u, v \in D(h).
\]

A subset \(D' \) of \(D(h) \) is a core of \(h \) if and only if it is a core of \(H^+ \).

Remark. We know that \(H^+ \) is a non-negative self-adjoint operator and \(H \) is an m-accretive operator, such that

\[
(H^+)^* = H.
\]

Theorem 2.5. Let \(T \) be an m-sectorial operator with vertex 0 and semi-angle \(\theta \), then \(H = \text{Re} \, T \) is non-negative and there is a symmetric operator \(B \in \mathcal{B}(H) \), such that \(\|B\| \leq \tan \theta \) and we have

\[
T = G(1 + iB)G^* \quad G = H^+.
\]

Notice that the proof of the above theorems (i.e., Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem 2.4, Theorem 2.4, and Theorem 2.4) are proved in Chapter 6 of Kato (see (Kato, 1966)).

The Basic Properties of M-sectorial Operators:

If \(T \) is an m-sectorial operator with vertex 0, then for every \(\text{Re} \, \lambda > 0 \) the inverse operator \((T + \lambda \cdot I)^{-1} \) exists such that

\[
\| (T + \lambda I)^{-1} \| \leq \text{Re} \lambda^{-1}
\]

If \(T \) is an m-sectorial operator with vertex 0 and semi-angle \(\phi \in \left(\frac{\pi}{2}, \theta \right] \), then

\[
\| (T - zI)^{-1} \| \leq \frac{1}{|z|} \quad \text{where} \quad |z| > 0.
\]

If in Theorem 2.2, the form \(t[u, v] \) to be symmetric (i.e., \(t[u, v] = t[v, u] \) \(u, v \in D(t) \)), then the operator \(T \) is self-adjoint \((T = T^*) \) and positive.

For every form \(t[u, v] \) we define the real part of \(t \) by \(t' = \text{Re} \, t \), i.e.,

\[
t'[u, v] = \frac{1}{2} \left[t[u, v] + t[v, u] \right]. \quad D(t) = D(t').
\]

Suppose \(t[u, v] \) satisfies the conditions of Theorem 2.2, and since the form \(t' = \text{Re} \, t \) also satisfies those conditions since \(t' = \text{Re} \, t \) is symmetric according to Theorem 2.2, then there exists a positive operator \(G = G^2 \geq 0 \) such that \(D(t) \subset D(t') \) and so \(t'[u, v] = (Gu, v) \), for every \(u \in D(G) \) and \(v \in D(t') \), the operator \(G \) exists a positive and unique operator \(Q = Q^2 \geq 0 \) such that \(Q^2 = G \), i.e.,

\[
Q = G^2
\]

therefore

\[
\frac{1}{2} (G^2 u, G^2 v) = t'[u, v], \quad u, v \in D(Q)
\]
Since the form $t[u, v]$ is closed, the operator $G^{1/2}$ is closed and we conclude that

$$D(t) = D(t'), \quad (G'u, G'v) = t'[u, v], \quad u, v \in D(G).$$

For every form $t[u, v]$ we define its adjoint $t'[u, v]$ by

$$t'[u, v] = \overline{t[u, v]}, \quad D(t') = D(t).$$

If the form $t[u, v]$ satisfies the conditions of Theorem 2.2, then the form $t'[u, v]$ satisfies those conditions, therefore there exists an m-sectorial operator T_t such that

$$t'[u, v] = \overline{t[u, v]}, \quad u \in D(T_t'), \quad v \in D(t')$$

It is easy to show that the operator T_t is a self-adjoint operator (i.e. $T = T'$).

An Important Example of m-sectorial Operator:

Let $H = L^2(0, 1)$, and define the following norm by

$$|u|_d = \left(\int_0^1 2^\alpha (1-t)^{2\alpha} |\mu'(t)|^2 dt + |\mu(t)|^2 \right)^{1/2}$$

for $0 < \alpha < 1$ by the space $H_\alpha = \tilde{W}_{2\alpha}(0, 1)$ we denote the closure of $C_0^\infty[0,1]$ with respect to the above norm and we have $H = H_1$. Now consider the following bilinear form

$$t[u, v] = \int_0^1 2^\alpha (1-t)^{2\alpha} u(t) u'(t) v(t) \overline{v'(t)} dt,$$

where $D(t) = \tilde{W}_{2\alpha}(0, 1)$, here $\mu(t) \in C^\infty[0,1]$ is a complex satisfying the following conditions

$$\mu(t) \neq 0, \quad |\arg \mu(t)| \leq \theta, \quad (\theta < \frac{\pi}{2})$$

If in the relation (1.1) instead of the form t we set the norm of relation (3.2), then the norm of (1.1) is equivalent to (3.1), since the space $\tilde{W}_{2\alpha}(0,1)$ is a Banach space then $D(t)$ is also Banach, i.e., the form $t[u, v]$ is a closed form. From the relations (3.2), (3.3) we conclude that

$$\{t[u, v] : u \in D(t)\} \subset \{z \in \mathbb{C} : |\arg z| \leq \theta\}.$$

Since the form $t[u, v]$ satisfies the conditions of Theorem 2.2, then there exists an m-sectorial operator T such that

$$D(t) \subset \tilde{W}_{2\alpha}(0,1)$$

and

$$(Tu, v) = \int_0^1 2^\alpha (1-t)^{2\alpha} \mu(t)u'(t) v(t) \overline{v'(t)} dt, \quad u \in D(T), \quad v \in \tilde{W}_{2\alpha}(0, 1).$$

Here $(,)$ is the inner product in $H = L^2(0, 1)$. The m-sectorial operator T satisfying the above conditions is unique. According to Theorem 2.2, the subset $D(t)$ is

$$D(t) = \{u \in \tilde{W}_{2\alpha}(0,1) : |t[u, v]| \leq M_u \|v\|, \quad (v \in \tilde{W}_{2\alpha}(0,1)\}.$$
Let $u \in D(T)$ and $f = Tu$ then

$$ (f, v) = \int_0^1 t^{2\alpha} (1-t)^{2\alpha} \mu(t) u'(t) \overline{v(t)} dt$$

$u \in D(T)$, $v \in C_0^\infty(0,1)$.

(3.4)

indeed the above equality is an extension of the following function

$$ g = -(t^{2\alpha} (1-t)^{2\alpha} \mu(t) u'(t))' \in D'(0,1). $$

Then $g = f \in L^1(0,1)$, since $u \in W^{1}_{2,\alpha}(0,1)$, then we will have $u' \in L^2_{be}(0,1)$ i.e., $u \in W^{2}_{2,\alpha}(0,1)$.

The space $W^{2}_{2,\alpha}(0,1)$ for $m = 0, 1, 2$ is the space of all functions $u(t)$ ($0 < t < 1$) such that

$$ W^{2}_{2,\alpha}(0,1) = \{ u \in L^1(0,1) : \int_0^1 |x^{(2)}(t)|^2 \, dt < \infty \}, $$

$\varepsilon \in (0, \frac{1}{2}).$

Therefore we proved if $u \in D(T)$ then

$$ u \in W^{1}_{2,\alpha}(0,1) \cap W^{2}_{2,\alpha}(0,1), $$

and

$$ f = -(t^{2\alpha} (1-t)^{2\alpha} \mu(t) u'(t))' \in L^2(0,1). $$

(3.5)

Conversely, if (3.5) and (3.6) are satisfied, then by partial integral, we can also show that (3.4) is satisfied.

Since $C_0^\infty(0,1)$ is dense in $W^{1}_{2,\alpha}(0,1)$ then the equality (3.4) holds (i.e., for every $v \in W^{1}_{2,\alpha}(0,1)$). Now we proved that $D(T)$ is the set of all the functions $u(t)$ ($0 < t < 1$) that satisfies the conditions (3.5), (3.6). If the conditions (3.5), (3.6) are satisfied then $f = Tu$. The adjoint of the form t is defined by

$$ t^*[u, v] = \int_0^1 t^{2\alpha} (1-t)^{2\alpha} \mu(t) u'(t) \overline{v(t)} dt$$

$u \in D(t^*) = W^{1}_{2,\alpha}(0,1).$

According to Theorem 2.2, there exists an m-sectorial operator T, such that according to Theorem 2.4, it is the adjoint of T. Now if we repeat the above operations the following theorem holds

Theorem 3.1. The domain of the operator T^* consists of

$$ u(t) \in W^{1}_{2,\alpha}(0,1) \cap W^{2}_{2,\alpha}(0,1), $$

such that

$$ F = -(t^{2\alpha} (1-t)^{2\alpha} \mu(t) u'(t))' \in L^2(0,1). $$

In Theorem 2.5, we have $F = T' u$. From the other side we have

$$ D(T^*) = \{ u \in W^{1}_{2,\alpha}(0,1) : |t^*[u, v]| \leq M_u \| v \|, \quad v \in C_0^\infty(0,1) \}. $$

For $\varphi \in (0, \pi)$ we have such estimate

$$ \| (T - \lambda I)^{-1} \| \leq M_\varphi |\lambda|^{-1}, \quad (\lambda \in \Phi_\varphi). $$

$$ \| (T' - \lambda I)^{-1} \| \leq M_\varphi |\lambda|^{-1}, \quad (\lambda \in \Phi_\varphi). $$
For every $t[u, v]$ form we define the real part of t equal to $t' = \text{Re} t$ i.e.

$$\ell'[u, v] = t' - \frac{1}{2} \int_0^1 \ell^{2a} (1-t)^{2a} \mu(t) u(t) v(t) dt$$

where

$$L(t') = \tilde{W}_{2a}(0, 1).$$

(3.7)

Here $\mu(t) \in C^{11}[0, 1]$ is a complex function that satisfies the following conditions $\mu(t) = \text{Re} \mu(t)$. According to Theorem 2.2, the form t_0 defines the operator $G = G^{0} = 0$. For the form t and the number $\lambda > 0$ the form t_1 is defined by

$$t_1[u, v] = t[u, v] + \lambda [u, v], \quad D(t_1) = D(t).$$

Suppose t and t' to be the forms (3.4), (3.7), then the forms t_1 and t_1' defines an m-sectorial operator T_1 and

$$G_1 = G_1^a = G + \lambda I,$$

it is easy to show that

$$T_1 = T + \lambda I, \quad G_1 = G + \lambda I.$$

From Theorem 2.2, we conclude that

$$(T + \lambda I) = (G + \lambda I)^{1/2} (I + i B(\lambda)) (G + \lambda I)^{1/2}, \quad \lambda \geq 0$$

(3.8)

Since $B(\lambda) = B(\lambda')$ is a bounded operator, for every $u \in L^2(0, 1)$ we will have

$$\| (I + i B(\lambda)) u \|^2 = \| u \|^2 + \| B(\lambda) u \|^2 \geq \| u \|^2,$$

i.e.,

$$\| (I + i B(\lambda)) u \|^2 \leq 1.$$

From here and (3.8) we will have

$$(T + \lambda I)^{-1} = (G + \lambda I)^{-1/2} X(\lambda) (G + \lambda I)^{-1/2}, \quad \| X(\lambda) \| \leq 1, \quad \lambda > 0.$$

(3.9)

Similarly, we will have

$$(T^* + \lambda I)^{-1} = (G + \lambda I)^{-1/2} X(\lambda)^* (G + \lambda I)^{-1/2}, \quad \| X(\lambda)^* \| \leq 1, \quad \lambda > 0.$$

These equalities help us to use the properties of the self-adjoint operators. The domain of G denoted by $D(G) = \{ u [t] \in \tilde{W}_{2a}(0, 1) \cap W_{2a,lec}^2 (0, 1) : (\ell^2 (1-t)^{2a} \mu_0 (t) u(t))' \in L^2(0, 1) \}$

If $u \in D(G)$, $G u = -(\ell^2 (1-t)^{2a} \mu_0 (t) u(t))'$, where

$$\mu_0 (t) \in C^{11}[0, 1], \quad c^\prime \leq \mu_0 (t) \leq c, \quad c, c^\prime > 0, \quad G = G^a \geq 0.$$

Many mathematicians work on the operator G. For example if $a = 1$ the operator $(G + \lambda I)^{-1}$ on the $L^2(0, 1)$ is compact. Indeed

$$(G + \lambda I)^{-1} \in S(H), \quad (H = L^2(0, 1)).$$

(3.10)
The space $S_1(H)$ induces from the operators Q is such that
$$|\mathcal{E}| = \sum_{i=1}^{n} \lambda_i(\mathcal{E} \cdot \mathcal{Q}^{-1}) < \infty,$$

here $\lambda_i(.)$, $i = 1, 2, \ldots$ are the eigenvalues of the operator $Q'Q$. If Q_1, $Q_2 \in S_1(H)$ are bounded operators, then we will have
$$|e_1 e_2| \leq |e_1| |e_2|, \quad |e_2 e_1| \leq |e_1| |e_2|.$$

If $Q \in S_1(H)$, then
$$\sum_{i=1}^{n} |\lambda_i(\mathcal{E})| \leq |\mathcal{E}|.$$

And the trace of the function Q is denoted by
$$tr Q = \sum_{i=1}^{n} \lambda_i(\mathcal{E}).$$

(3.11)

From (2.10) and (2.11), we conclude that the operator $(T + \lambda I)^{-1}$ is compact, then the operator T has a countable spectrum and the eigenvalues of the operator $(T + \lambda I)^{-1}$ denoted by $$(\lambda_1(T) + \lambda)^{-1}, (\lambda_2(T) + \lambda I)^{-1},$$

from (3.8) and (3.11) we conclude that
$$\sum_{i=1}^{n} |\lambda_i(T) + \lambda| \leq \|(T + \lambda I)^{-1}\| \leq \|(G + \lambda I)^{-1}\|.$$

Here $\|\cdot\|$ is Hilbert Schmidt norm and we use the inequality
$$|e_1 e_2 e_3| \leq |e_1| |e_2| |e_3|.$$

Since for each $u \in D(T)$, $|\arg(Tu,u)| \leq \theta$, then $|\arg \lambda_i(T)| \leq \theta$, $i= 1,2, \ldots$ i.e.,

$$|\lambda_i(T)| \leq \lambda^0_1 \|A(T) + \lambda\|^{-1}.$$

The following functions are defined by
$$N(t) = \text{card} \{ j : |\lambda_j(T)| \leq t \}, \quad n(t) = \text{card} \{ j : |\lambda_j(\mathcal{Q})| \leq t \},$$

it is easy to show that
$$n(t) \leq M_{1} (1 + t)^2, \quad t \leq 0$$

from the above relations we will have
$$N(t) - \int_0^t dN(s) \leq 2 \int_0^t (\mathcal{Q} + \lambda)^{-1} dN(s)$$

$$\leq 2 \int_0^t (\mathcal{Q} + \lambda)^{-1} dN(s) - 2 \sum_{i=1}^{n} |\lambda_i(T)| \leq 2 M_{1,2} (\mathcal{Q} + \lambda t)^{-1}.$$

On the other hand we have

4565
Now the following theorem is proved

Theorem 3.2. The eigenvalues of the operator T are in the sector $S = \{ z \in \mathbb{C} : | \arg z | \leq \theta \}$, these eigenvalues are in $S = \{ z \in S : |z| \leq t \}$ and are less than $M'(1+t)^{\frac{1}{2}}$ where $M > 0$ is independent of t.

Let $N(\xi) = \text{card} \{ j : (\lambda_j(T)) \in S_+ \} \leq M'(1+t)^{\frac{1}{2}}$.

In the end we will speak about the concept of the Friedrichs extension. Consider the operator T_0 (in Hilbert space) that satisfies the following conditions:

$$\| \langle T_0 u, v \rangle \| \leq \theta, \quad u \in D(T_0), \quad \theta \in (0, \frac{\pi}{2}).$$

If $D(T_0)$ is dense in H then we denote the closure of $D(T_0)$ in the following norm

$$\| u \|_+ = (\Re \langle T_0 u, v \rangle + \| u \|^2)^{\frac{1}{2}}.$$ \hspace{1cm} (3.1)

Let $H_+ = D(\cdot)$ then we defined the bilinear form $\langle u, v \rangle$ for $u \in D(T)$, $v \in H$, by;

$$\langle u, v \rangle = \langle T_0 u, v \rangle.$$

If $u \in H \setminus D(T_0)$, then there exist the sequence $\{ u_n \} \subset D(T_0)$ such that in H, $u_n \to u$. In this case we set

$$\langle u, v \rangle = \lim_{n \to \infty} \langle T_0 u_n, v \rangle.$$

It is easy to see that the form $\langle u, v \rangle$ is a closed sectorial bilinear form and also $D(\cdot)$ is dense in H.

According to Theorem 2.2 there exists an m-sectorial operator T such that

(i) $DT = D(\cdot)$ and

$$\langle u, v \rangle = \langle Tu, v \rangle.$$

(ii) $D(T) = \{ u \in H_+ : \| u \|_+ \leq M_u \| v \|, \quad (v \in H_+) \}.$$

The operator T is unique and is called the Friedrichs extension of T_0. It is easy to see that the differential operator T that we got above is the Friedrichs extension of the following operator

$$T_0 u = -u^{(2)} (1-t)^{2t} \mu(t) u'(t),$$

with domain $D(T_0) = C^\infty_0(0,1)$.

REFERENCES

Kh, K., Boimatov and A.G. Kostychenko, 1990. The spectral asymptotics of non-selfadjoint elliptic

