New Hybrid Globally Convergent CG-Algorithms for Nonlinear Unconstrained Optimization

Abbas Y. Al-Bayati and Barah M. Al-Baro

1,2Department Mathematics, Mosul University, Mosul, IRAQ

Abstract: Problem Statement: Conjugate gradient methods, which we have investigated in this study, were widely used in optimization, especially for large scale optimization problems, because it does not need the storage of any matrix. The purpose of this construction is to find new CG-algorithms suitable for solving large scale optimization problems with obtaining better numerical results.

Approach: In this study, we made three linear combinations for the proposed family of CG-methods, the first resulted from the linear combination of Andrei 2007 and Powell 1984 methods; the second yielded from Andrei 2007 and Dai-Liao 2001 methods while the third was a combination of Andrei 2007 and Yabe-Takano 2003 methods. Results: Numerical results, showed that the presented new CG-algorithms have been proved to be effective algorithms in solving large scale optimization problems and gave us a good numerical results. Conclusion: Our new proposed algorithms always produce descent search directions and were shown to be globally convergent under some assumptions.

Key words: Unconstrained optimization, conjugate gradient method, descent directions, global convergent methods.

INTRODUCTION

Our problem was to minimize a function of n variables

\[\text{minimize } f(x), \]

where \(f \) smooth and the gradient \(g(x) = \nabla f(x) \) was available. Conjugate gradient methods for solving (1) were iterative methods of the form

\[x_{k+1} = x_k + \alpha_k d_k, \]

where \(\alpha_k > 0 \) was a step length and \(d_k \) was a search direction. Let \(g_k \) denote \(g(x_k) \). The search direction at the first iteration was the steepest descent direction, i.e., \(d_0 = -g_0 \). The consequent search direction were defined by

\[d_{k+1} = -g_{k+1} + \beta_{k+1} d_k, \]

where \(\beta_{k+1} \) is a scalar. For a strictly convex quadratic function \(f(x) = (1/2) x^T G x - b^T x \in R^m \) a symmetric positive definite matrix, and for the exact one-dimensional minimizer \(\alpha_k \) given by \(\alpha_k = \| g_k \| / d_k^T G d_k \),

then the method (2)-(3) was called the linear conjugate gradient method, where \(\| . \| \) denotes the Euclidean norm.

The linear conjugate gradient method was originally proposed by (Hestenes and Stiefel, 1952) for solving the linear system of equations \(G x = b \) and several formulas of \(\beta_k \) were considered, which were equivalent for strictly convex quadratic objective function. Within the framework of linear conjugate gradient methods, the

Corresponding Author: Abbas Y. AL-Bayati, Department Mathematics, Mosul University, Mosul, IRAQ

4223
conjugacy condition was defined by $d_i^T G d_j = 0, \ i \neq j$ for search directions and this condition guarantees the finite termination of linear conjugate gradient methods.

On the other hand, (2)-(3) called the nonlinear conjugate gradient method for general unconstrained optimization problem. The nonlinear conjugate gradient method was first proposed by (Fletcher and Reeves, 1964). Within the framework of nonlinear conjugate gradient methods, the conjugacy condition replaced by

$$d_{k+1}^T y_k = 0,$$

where $y_k = g_{k+1} - g_k$, and

$$d_{k+1}^T G d_k = \frac{1}{\alpha_k} d_{k+1}^T G(x_{k+1} - x_k) = \frac{1}{\alpha_k} d_{k+1}^T(g_{k+1} - g_k) = \frac{1}{\alpha_k} d_{k+1}^T y_k$$

hold for the strictly convex quadratic objective function, or the mean value theorem stated

$$d_{k+1}^T y_k = \alpha_k d_{k+1}^T \nabla^2 f(x_k + \omega \alpha_k d_k) d_k$$

for some $\omega \in (0, 1)$. Thus condition (4) defined that the search directions d_{k+1} and d_k were mutually conjugate with respect to the Hessian matrix $\nabla^2 f(x)$ at some point. Well-known formulas for β_k were the Fletcher-Reeves (FR), Polak-Ribiére-Polyak (PRP) and Hestenes-Stiefel (HS) formulas and they were given by

$$\beta_{k+1}^{FR} = \frac{\|g_{k+1}\|^2}{\|g_k\|^2},$$

$$\beta_{k+1}^{PRP} = g_{k+1}^T y_k / \|g_k\|^2,$$

$$\beta_{k+1}^{HS} = g_{k+1}^T y_k / d_{k+1}^T y_k.$$

The global convergence properties of the FR, PRP and HS methods without regular restarts have been studied by many researchers. To establish the convergence results of these methods, it was usually required that the step length α_k should satisfy the strong Wolfe conditions:

$$f(x_k) - f(x_k + \alpha_k d_k) \geq -\delta \alpha_k g_k^T d_k$$

and

$$\left| g(x_k + \alpha_k d_k)^T d_k \right| \leq \sigma \left| g_k^T d_k \right|$$

where $0 < \delta < \sigma < 1$. Some convergence analysis even require that the α_k be computed by the exact line search, i.e. $f(x_k + \alpha_k d_k) = \min_{\alpha > 0} f(x_k + \alpha d_k)$. On the other hand, many other numerical methods for unconstrained optimization were proved to be convergent under the Wolfe conditions:

$$f(x_k) - f(x_k + \alpha_k d_k) \geq -\delta \alpha_k g_k^T d_k$$

and

$$g(x_k + \alpha_k d_k)^T d_k \geq \sigma g_k^T d_k.$$

These line search strategies required the descent condition

$$g_k^T d_k < 0, \ \text{for all} \ k$$

however most of conjugate gradient methods don’t always generate a descent condition, so condition (12) was usually assumed in the analysis and implementations.

Now, the algorithm of general CG-algorithm was described as follows:
Outline of the Standard CG-Algorithm:

Step 0. Given $x_0 \in \mathbb{R}^n$, set $d_0 = g_0$ and $k := 0$. If $g_0 = 0$, then stop.

Step 1. Compute $\alpha_k > 0$ satisfying the Wolfe conditions (10) and (11).

Step 2. Let $x_{k+1} = x_k + \alpha_k d_k$. If $g_{k+1} = 0$, then stop.

Step 3. Compute β_k and generate d_{k+1} by (3).

Step 4. Set $k := k + 1$, and go to Step 1.

MATERIALS AND METHODS

Neculai Andrei (2007) Algorithm:

Andrei (Andrei, 2007) presented a modification of Dai and Yuan (Dai and Yuan, 1999) computational scheme

$$
\beta_{k+1}^{DY} = g_k^T y_{k+1} / y_k^T s_k, \quad (13)
$$

in order to satisfy both the sufficient descent condition and the conjugacy condition in the frame of conjugate gradient methods as:

$$
d_{k+1} = -\theta_k g_{k+1} + \beta_{k+1} s_k, \quad d_0 = -g_0, \quad (14)
$$

$$
\theta_k = g_k^T g_{k+1} / y_k^T s_k, \quad (15)
$$

$$
\beta_{k+1}^{DY} = \frac{1}{y_k^T s_k} \left(g_{k+1} - \delta_k \frac{||g_{k+1}||^2}{y_k^T s_k} s_k \right)^T g_{k+1}, \quad (16)
$$

$$
\delta_k = y_k^T g_{k+1} / y_k^T s_k, \quad (17)
$$

relations (14)–(17) referred to the family of scaled conjugate gradient methods introduced by (Birgin and Martinez, 2001). In Andrei’s algorithm the parameter β_{k+1} has been selected in such a manner that the sufficient descent condition was satisfied every iteration. Besides, the parameters θ_k and δ_k were chosen so that the conjugacy condition $y_k^T d_{k+1} = 0$ always holds, independently of the line search procedure.

From (15) and (17) Andrei observed that $\theta_k \cdot (3/4) \theta_{k+1}$. Therefore, if for all k, $\theta_{k+1} > 0$, i.e. if $g_{k+1} > 0$, then for all k the search direction d_{k+1} given by (14)-(17) satisfy the sufficient descent condition

Andrei proved the super linear convergence of his algorithm.

Powell (1984) Algorithm:

This method proposed by Powell (Powell, 1984), and analyzed by Gilbert and Nocedal (Gilbert and Nocedal, 1992). Powell showed that the Polak-Ribière (PR) method with exact line searches can cycle infinitely, without approaching a solution point.

Powell assumed that the line search always finds the first stationary point, and showed that there was a twice continuously differentiable function such that the sequence of gradients generated by the Polak-Ribière method stays bounded away from zero. Since Powell’s example requires that some consecutive search directions become almost contrary, and since this can only be achieved (in the case of exact line searches) when $\beta_{k+1} < 0$, Powell suggests modifying the (PR) method.
by setting

$$\beta_{k+1}^{PR} = \max \{ \beta_{k+1}^{PR}, 0 \}.$$

Thus if a negative value of β_{k+1}^{PR} occurs, this strategy will restart the iteration along the steepest descent direction. Gilbert and Nocedal (Gilbert and Nocedal, 1992) show that this modification of the Polak-Ribière method is globally convergent both for exact and inexact line searches. If negative values of β_{k+1}^{PR} occurred infinitely often, global convergence would follow, because an infinite number of steepest descent steps would be taken.

Dai-Liao (2001) Algorithm:

The conjugacy condition may be represented by the form (4). For many unconstrained optimization methods, including Quasi-Newton (QN) methods, the memoryless BFGS method, and the limited memory BFGS method, the search direction d_k can be written in the form

$$d_{k+1} = -H_{k+1}g_{k+1},$$

where H_k is some $n \times n$ symmetric and positive definite matrix satisfying the (QN) equation:

$$H_{k+1}y_k = s_k,$$

$s_k = \alpha_k d_k$ is the step. By (21) and (22), we have that

$$d_{k+1}^T y_k = -(H_{k+1}g_{k+1})^T y_k = -g_{k+1}^T (H_{k+1}y_k) = -g_{k+1}^T s_k.$$

The above relation implies that (4) holds for exact line search since in this case $g_{k+1}^T s_k = 0$. However, practical numerical algorithms normally adopt inexact line searches instead of exact line searches. For this reason, it seems more reasonable to replace the conjugacy condition (4) with the condition

$$d_{k+1}^T y_k = -t g_{k+1}^T s_k,$$

where $t \geq 0$ is a scalar. To ensure the search direction d_k in (3) satisfies the conjugacy condition (24), multiply (3) with y_k and use (17), yielding

$$\beta_{k+1}^{DL} = \frac{g_{k+1}^T(y_k - ts_k)/d_k^T y_k}{d_k^T y_k},$$

Dai and Liao (Dai and Liao, 2001) suggested a modification of (25) from a viewpoint of global convergence for general functions, which is restricted the first term to non-negative values,

$$\beta_{k+1}^{DL+} = \max \{ g_{k+1}^T y_k / d_k^T y_k, 0 \} - t \left(g_{k+1}^T s_k / d_k^T y_k \right).$$

Yabe-Takano (2004) Algorithm:

Yabe and Takano (Yabe and Takano, 2004) derived a new conjugacy condition following to Dai and Liao (Dai and Liao, 2001). For this purpose, they make use of the modified secant condition

$$H_{k+1}y_k = s_k,$$

$$\hat{y}_k = y_k + \left(\theta_1 + s_k^T u_k \right) u_k,$$

instead of the ordinary one (22). Let Z_k be defined by
\[z_k = y_k + \rho \left[\left(\theta_k s_k^T u_k \right) u_k \right], \]
\[\theta_k = 6(f_k - f_{k+1}) + 3(g_k + g_{k+1})^T s_k, \]

where \(\rho \) is a nonnegative parameter and \(u_k \in \mathbb{R}^n \) any vector such that \(s_k^T u_k \neq 0 \). Yabe and Takano consider the modified secant condition with \(Z_k \).

\[H_{k+1}z_k = s_k, \quad (29) \]

For the case \(\rho = 0 \) and \(\rho = 1 \), this condition corresponds to the usual secant condition (22) and the modified secant condition (27), respectively. It follows from (21) and (29) that

\[d_{k+1}^T z_k = -(H_{k+1}g_{k+1})^T z_k = -g_{k+1}^T (H_{k+1}z_k) = -g_{k+1}^T s_k. \]

Taking this relation into consideration, they replace condition (4) by the new condition

\[d_{k+1}^T z_k = -tg_{k+1}^T s_k, \quad (30) \]

where \(t > 0 \) is a scalar. To ensure that the search direction \(d_k \) satisfies this condition, they substituted (3) into (30)

as \(-g_{k+1}^T z_k + \beta_{k+1} d_{k+1}^T z_k = -tg_{k+1}^T s_k \) and then they obtained a new \(\beta_{k+1} \) in the form

\[\beta_{k+1}^{PR} = g_{k+1}^T (z_k - ts_k) / d_k^T z_k. \quad (31) \]

Following to Dai and Liao algorithm, they replaced (31) by

\[\beta_{k+1}^{PR} = \max \left\{ g_{k+1}^T z_k / d_k^T z_k, 0 \right\} - t \left(g_{k+1}^T s_k / d_k^T z_k \right). \quad (32) \]

and proved that the conjugate gradient method with (32) was globally convergent.

In the following section, we proposed and analyzed three new hybrid conjugate gradient algorithms as three convex combinations the first of Andrei and Powell algorithms, the second of Andrei and Dai-Liao algorithms and the third of Andrei and Yabe-Takano algorithms, and in our algorithms we used a hybrid line search procedure which optimized \(\alpha_k \) which suggested by Al-Bayati and Rassam (Al-Bayati and Rassam, 2009).

NEW1 CG-Algorithm:

In this algorithm we combined two well-known \(\beta \)'s as:

\[\beta_{k+1}^{NEW1} = \phi_k \beta_{k+1}^{PR} + (1 - \phi_k) \alpha_k \beta_{k+1}^A \]

where \(\phi_k \) is a scalar parameter satisfying \(0 \leq \phi_k \leq 1 \). In order to keep \(\beta_{k+1} \geq 0 \), for the case \(\phi_k = 0 \), \(\beta_{k+1}^{NEW1} \geq 0 \) since \(\beta_{k+1}^A \geq 0 \), and for the case \(\phi_k = 1 \), \(\beta_{k+1}^{NEW1} \geq 0 \) since \(\beta_{k+1}^{PR} \geq 0 \) too.

In addition, the search direction \(d_{k+1} \) is the convex combination of Andrei’s search direction \(d_{k+1}^A \) and Powell’s search direction \(d_{k+1}^{PR} \) that is

\[d_{k+1}^{NEW1} = \phi_k d_{k+1}^{PR} + (1 - \phi_k) d_{k+1}^A, \]

It is easy to see that
To generate a descent search direction, Suppose that \(d_k\) was a descent direction, i.e., \(g_T d_k \leq 0\). To find \(\beta_{k+1}\) let

\[
\begin{align*}
g_{k+1}^T d_{k+1} &= -\overline{\alpha}_{k+1} \|g_{k+1}\|^2 + \beta_{k+1} g_{k+1}^T d_k < 0.
\end{align*}
\]

by using \(g_{k+1}^T d_k < 0\) and \(\beta \geq 0\), the right hand side may be rewritten as

\[
\begin{align*}
-\|g_{k+1}\|^2 + \beta_{k+1} g_{k+1}^T d_k &= -\overline{\alpha}_{k+1} \|g_{k+1}\|^2 + \beta_{k+1} g_{k+1}^T d_k - \beta_{k+1} g_{k+1}^T d_k + \beta_{k+1} g_{k+1}^T d_k \\
&= -\overline{\alpha}_{k+1} \|g_{k+1}\|^2 + \beta_{k+1} d_k^T y_k + \beta_{k+1} g_{k+1}^T d_k \\
&\leq -\overline{\alpha}_{k+1} \|g_{k+1}\|^2 + \beta_{k+1} d_k^T y_k.
\end{align*}
\]

therefore, the non-positivity of (36) was sufficient to investigate from condition (35). Condition (36) reduced to the condition

\[
\|g_{k+1}\|^2 \geq -\overline{\alpha}_{k+1} \beta_{k+1} d_k^T y_k
\]

by summarizing these relations, we have the following lemma.

Lemma 1.

We assume \(\beta_{k+1} \geq 0\). If \(\beta_{k+1}\) satisfies inequality (37), then \(d_{k+1}\) is a descent direction for the objective function.

Now, we will construct a new \(\beta_{k+1}\) that satisfies the condition (37). For this purpose, we choose \(\varphi_k\) that satisfies the inequality (37).

Case (i). For exact line search \(d_k y_k = \sigma_k g_{k+1} = 0\)

\[
\|g_{k+1}\|^2 \geq \overline{\alpha}_{k+1} \beta_{k+1} d_k^T y_k
\]

\[
\begin{align*}
&= \phi_k \left[\max \left\{ \frac{g_{k+1}^T y_k}{g_k^T g_k}, 0 \right\} \right] + (1 - \phi_k) \alpha_k \left\{ \frac{\|g_{k+1}\|}{y_k^T s_k} \right\} \overline{\alpha}_{k+1} d_k^T y_k \\
&= \phi_k \max \left\{ \frac{g_{k+1}^T y_k}{g_k^T g_k}, 0 \right\} - \alpha_k \frac{\|g_{k+1}\|}{y_k^T s_k} \overline{\alpha}_{k+1} d_k^T y_k + \alpha_k \frac{\|g_{k+1}\|^2}{y_k^T s_k} \overline{\alpha}_{k+1} d_k^T y_k.
\end{align*}
\]

This yields,

\[
\begin{align*}
\left(1 - \alpha_k \overline{\alpha}_{k+1} \frac{d_k^T y_k}{y_k^T s_k} \right) \|g_{k+1}\|^2 \geq \phi_k \max \left\{ \frac{g_{k+1}^T y_k}{g_k^T g_k}, 0 \right\} - \alpha_k \frac{\|g_{k+1}\|}{y_k^T s_k} \overline{\alpha}_{k+1} d_k^T y_k
\end{align*}
\]

For simplicity of notation, we define

\[
\mu_k = \max \left\{ \frac{g_{k+1}^T y_k}{g_k^T g_k}, 0 \right\} - \alpha_k \frac{\|g_{k+1}\|}{y_k^T s_k},
\]

then we have
Let φ_k be defined as follows:

\[
\begin{align*}
\varphi_k &= \min\left\{ \frac{1}{\mu_k \overline{\alpha}_k \overline{\mu}_k d_k^T y_k} \left(1 - \alpha_k \overline{\alpha}_k \overline{\mu}_k d_k^T y_k \right) \left\| g_{k+1} \right\|^2, 1 \right\} \\
&= \overline{\varphi}_k \\
&= \varphi_k \left\{ \max \left\{ \frac{g_{k+1}^T y_k}{g_k^T g_k}, 0 \right\} \right\} - \alpha_k \eta_k \overline{\alpha}_k \overline{\mu}_k d_k^T y_k \\
&= \varphi_k \left\{ \max \left\{ \frac{g_{k+1}^T y_k}{g_k^T g_k}, 0 \right\} - \alpha_k \eta_k \right\} \overline{\mu}_k \overline{\alpha}_k d_k^T y_k \\
&= \varphi_k \left\{ \max \left\{ \frac{g_{k+1}^T y_k}{g_k^T g_k}, 0 \right\} \right\} \overline{\mu}_k \overline{\alpha}_k \overline{\mu}_k \overline{\alpha}_k d_k^T y_k.
\end{align*}
\]

This yields,

\[
\begin{align*}
\left\| g_{k+1} \right\|^2 &\geq \overline{\alpha}_k \overline{\mu}_k d_k^T y_k \\
&= \varphi_k \left\{ \max \left\{ \frac{g_{k+1}^T y_k}{g_k^T g_k}, 0 \right\} - \alpha_k \eta_k \right\} \overline{\alpha}_k \overline{\mu}_k d_k^T y_k.
\end{align*}
\]

For simplicity of notation, we define

\[
\mu_k = \max \left\{ \frac{g_{k+1}^T y_k}{g_k^T g_k}, 0 \right\} - \alpha_k \eta_k
\]

then we have

\[
\left\| g_{k+1} \right\|^2 - \alpha_k \eta_k \overline{\alpha}_k \overline{\mu}_k d_k^T y_k \geq \varphi_k \mu_k \overline{\alpha}_k \overline{\mu}_k d_k^T y_k
\]

as (38) we have
\[
\bar{\phi}_k = \min \left\{ \frac{1}{\mu_k \bar{\theta}^{-1}_{k+1} d^T_k y_k} \left(\|g_{k+1}\|^2 - \alpha_k \eta_k \bar{\theta}^{-1}_{k+1} d^T_k y_k \right), 1 \right\}
\] \hspace{1cm} (39)

Then \(\beta^{\text{NEW1}}_{k+1} \) satisfies condition (37).

Outline of NEW1 CG-Algorithm:

For \(x_0 \in \mathbb{R}^n \), set \(d_0 = -g_0 \), and \(k = 0 \). If \(g_0 = 0 \), then stop.

Compute \(\alpha_k \) satisfying the new condition

\[
f(x_k + \alpha_k d_k) \leq f(x_k) + \delta_1 \alpha_k g^T_k d_k - \delta_2 \alpha_k^2 \|d_k\|^2
\] \hspace{1cm} (40)

\[
\left| g^T_{k+1} d_k \right| < \sigma \left| d^T_k g_k \right|
\] \hspace{1cm} (41)

Set \(x_{k+1} = x_k + \alpha_k d_k \). If \(g_{k+1} = 0 \), then stop.

Compute \(\beta_{k+1} \) by (33) and (38) or (39). In addition, generate \(d_{k+1} \) by (34).

Set \(k = k+1 \), and go to Step2.

NEW2 CG-Algorithm:

In this algorithm, we combined two well-known \(\beta^i \)-s as:

\[
\bar{\beta}^{\text{NEW2}}_{k+1} = \phi_k \beta^{\text{DL+}}_{k+1} + (1 - \phi_k) \alpha_k \beta^A_{k+1}
\] \hspace{1cm} (42)

where \(\varphi_k \) is a scalar parameter satisfying \(0 \leq \varphi_k \leq 1 \). In order to keep \(\beta^{\text{DL+}}_{k+1} \geq 0 \), we control the parameter \(t \) so that \(\beta^{\text{DL+}}_{k+1} \geq 0 \) is satisfied. Concretely, for the case \(\left(g^T_{k+1} s_k / d^T_k y_k \right) \leq 0 \), we can choose any \(t \geq 0 \), and for the case \(\left(g^T_{k+1} s_k / d^T_k y_k \right) > 0 \), we choose \(t \) such that

\[
0 \leq t \leq \left(d^T_k y_k / g^T_{k+1} s_k \right) \max \left\{ g^T_{k+1} y_k / d^T_k y_k, 0 \right\}
\]

In addition, the search direction \(d_{k+1} \) is the convex combination of Andrei’s search direction \(d^A_{k+1} \) and Dai and Laio’s search direction \(d^{DL+}_{k+1} \) that is

\[
d^{\text{NEW2}}_{k+1} = \phi_k d^{\text{DL+}}_{k+1} + (1 - \phi_k) d^A_{k+1}
\]

It is easy to see that

\[
d^{\text{NEW2}}_{k+1} = -(\phi_k + (1 - \phi_k) \theta_{k+1}) g_{k+1} + (\phi_k \beta^{\text{DL+}}_{k+1} + (1 - \phi_k) \alpha_k \beta^A_{k+1}) d_k
\] \hspace{1cm} (43)

where \(\theta_{k+1} = \left(g^T_{k+1} s_{k+1} / y^T_{k+1} g_{k+1} \right) \), and \(\bar{\theta}_{k+1} = \phi_k + (1 - \phi_k) \theta_{k+1} \). Now, we will construct a new \(\beta_{k+1} \) that satisfies the condition (37). For this purpose, we choose \(\varphi_k \) that satisfies the following inequality (37).
Case (i). For exact line search \(d_k^T g_k = s_k^T g_{k+1} = 0 \),
\[
\|g_{k+1}\|^2 \geq \theta_{k+1}^{-1} \beta_{k+1} d_k^T y_k \\
= \left\{ \phi_k \max \left\{ \frac{g_{k+1}^T y_k}{d_k^T y_k}, 0 \right\} \right\} + (1-\phi_k) \alpha_k \left\{ \frac{\|g_{k+1}\|^2}{y_k^T s_k} \right\} \theta_{k+1}^{-1} d_k^T y_k \\
= \phi_k \left\{ \max \left\{ \frac{g_{k+1}^T y_k}{d_k^T y_k}, 0 \right\} - \alpha_k \frac{\|g_{k+1}\|^2}{y_k^T s_k} \right\} \theta_{k+1}^{-1} d_k^T y_k \plus \alpha_k \frac{\|g_{k+1}\|^2}{y_k^T s_k} \theta_{k+1}^{-1} d_k^T y_k.
\]

This yields,
\[
\left(1 - \alpha_k \theta_{k+1}^{-1} d_k^T y_k \right) \|g_{k+1}\|^2 \geq \phi_k \left(\max \left\{ \frac{g_{k+1}^T y_k}{d_k^T y_k}, 0 \right\} - \alpha_k \frac{\|g_{k+1}\|^2}{y_k^T s_k} \right) \theta_{k+1}^{-1} d_k^T y_k.
\]

For simplicity of notation, we define
\[
\mu_k = \max \left\{ \frac{g_{k+1}^T y_k}{d_k^T y_k}, 0 \right\} - \alpha_k \frac{\|g_{k+1}\|^2}{y_k^T s_k},
\]
then we have
\[
\left(1 - \alpha_k \theta_{k+1}^{-1} d_k^T y_k \right) \|g_{k+1}\|^2 \geq \phi_k \mu_k \theta_{k+1}^{-1} d_k^T y_k.
\]

as (38) we have
\[
\overline{\phi}_k = \min \left\{ \frac{1}{\mu_k \theta_{k+1}^{-1} d_k^T y_k} \left(1 - \alpha_k \theta_{k+1}^{-1} d_k^T y_k \right) \|g_{k+1}\|^2, \ 1 \right\} \quad (44)
\]

Then \(\beta_{k+1}^{NEW} \) satisfies condition (37).

Case (ii). For inexact line search \(d_k^T g_{k+1} > 0 \) , \(s_k^T g_{k+1} > 0 \).

Let \(\eta_k = \frac{1}{y_k^T s_k} \left(\|g_{k+1}\|^2 - \frac{y_k^T g_{k+1}}{y_k^T s_k} s_k^T g_{k+1} \right) \)
\[
\|g_{k+1}\|^2 \geq \theta_{k+1}^{-1} \beta_{k+1} d_k^T y_k \\
= \left\{ \phi_k \max \left\{ \frac{g_{k+1}^T y_k}{d_k^T y_k}, 0 \right\} - \frac{g_{k+1}^T s_k}{d_k^T y_k} \right\} + (1-\phi_k) \alpha_k \eta_k \theta_{k+1}^{-1} d_k^T y_k \\
= \phi_k \left(\max \left\{ \frac{g_{k+1}^T y_k}{d_k^T y_k}, 0 \right\} - \frac{g_{k+1}^T s_k}{d_k^T y_k} - \alpha_k \eta_k \right) \theta_{k+1}^{-1} d_k^T y_k \plus \alpha_k \eta_k \theta_{k+1}^{-1} d_k^T y_k.
\]

This yields,
For simplicity of notation, we define

\[
\mu_k = \max \left\{ \frac{g_{k+1}^T y_k}{d_k^T y_k}, 0 \right\} - t \frac{g_{k+1}^T s_k}{d_k^T y_k} - \alpha_k \eta_k,
\]

then we have

\[
\|g_{k+1}\|^2 - \alpha_k \eta_k \bar{\theta}_{k+1}^{-1} d_k^T y_k \geq \phi_k \mu_k \bar{\theta}_{k+1}^{-1} d_k^T y_k
\]

as (38) we have

\[
\bar{\phi}_k = \min \left\{ \frac{1}{\mu_k \bar{\theta}_{k+1}^{-1} d_k^T y_k} \left(\|g_{k+1}\|^2 - \alpha_k \eta_k \bar{\theta}_{k+1}^{-1} d_k^T y_k \right), 1 \right\}
\]

Then \(\rho_{\text{NEW}} \) satisfies condition (37).

Outline of NEW2 CG-Algorithm:
Is same as in NEW1 CG-algorithm except that \(\beta_{k+1} \) computed by (42) and (44) or (45). In addition, generate \(d_{k+1} \) by (43).

NEW3 CG-Algorithm:
In this algorithm we combined two well-known \(\beta \)'s as:

\[
\beta_{k+1}^{\text{NEW3}} = \phi_k \beta_1^{\text{YT}+} + (1 - \phi_k) \alpha_k \beta_{k+1}^A
\]

\[
= \phi_k \left\{ \max \left\{ \frac{g_{k+1}^T z_k}{d_k^T z_k}, 0 \right\} - t \frac{g_{k+1}^T s_k}{d_k^T z_k} \right\} + (1 - \phi_k) \alpha_k \left\{ \frac{1}{y_k^T s_k} \left(\|g_{k+1}\|^2 - \frac{y_k^T g_{k+1} s_k}{y_k^T s_k} \right) \right\},
\]

\[
z_k = y_k + \rho \left(\frac{\theta_k}{s_k^T u_k} \right) u_k \geq 0,
\]

\[
\theta_k = 6 (f_k - f_{k+1}) + 3 (g_k + g_{k+1})^T s, u_k \text{ is any vector } \theta_k^T u_k \neq 0.
\]

where \(\phi_k \) is a scalar parameter satisfying \(0 \leq \phi_k \leq 1 \). In order to keep \(\beta_{k+1} \geq 0 \) we control the parameter \(t \) so that \(\beta_{k+1}^{\text{YT}+} \geq 0 \) as satisfied. Concretely, for the case \(\left(g_{k+1}^T s_k / d_k^T z_k \right) \leq 0 \), we can choose any \(t \geq 0 \), and for the case \(\left(g_{k+1}^T s_k / d_k^T z_k \right) > 0 \), we choose \(t \) such that

\[
0 \leq t \left(\frac{d_k^T z_k}{g_{k+1}^T s_k} \right) \max \left\{ \frac{g_{k+1}^T z_k}{d_k^T z_k}, 0 \right\}.
\]

In addition, the search direction \(d_{k+1} \) is the convex combination of Andrei’s search direction \(d_{k+1}^A \) and Yabe and Takano’s search direction \(d_{k+1}^{\text{YT}+} \), that is

\[
d_{k+1}^{\text{NEW3}} = \phi_k d_{k+1}^{\text{YT}+} + (1 - \phi_k) d_{k+1}^A.
\]
It is easy to see that
\[d_{k+1}^{NEW} = -(\phi_k + (1 - \phi_k)\theta_{k+1})g_{k+1} + (\phi_k\beta_{k+1}^{TT} + (1 - \phi_k)\alpha_k\beta_{k+1}^d)d_k \]
(47)
where \(\theta_{k+1} = (\gamma_k g_{k+1} / y_k^T g_{k+1}) \), and \(\theta_{k+1} = \phi_k + (1 - \phi_k)\theta_{k+1} \). Now, we will construct a new \(\beta_{k+1} \) that satisfies the condition (37). For this purpose, we choose \(\phi_k \) that satisfies the inequality (37).

Case (i). For exact line search \(d_k^T g_k = s_k^T g_{k+1} = 0 \),
\[\|g_{k+1}\|^2 \geq \theta_{k+1}^{-1}\beta_{k+1} d_k^T y_k \]
\[= \phi_k \left(\max \left\{ \frac{g_{k+1}^T z_k}{d_k^T z_k}, 0 \right\} \right) + (1 - \phi_k)\alpha_k \left(\frac{\|g_{k+1}\|^2}{y_k^T s_k} \right) \theta_{k+1}^{-1} d_k^T y_k \]
\[= \phi_k \left(\max \left\{ \frac{g_{k+1}^T z_k}{d_k^T z_k}, 0 \right\} \right) - \alpha_k \left(\frac{\|g_{k+1}\|^2}{y_k^T s_k} \right) \theta_{k+1}^{-1} d_k^T y_k + \alpha_k \left(\frac{\|g_{k+1}\|^2}{y_k^T s_k} \right) \theta_{k+1}^{-1} d_k^T y_k. \]
This yields,
\[\left(1 - \alpha_k \theta_{k+1}^{-1} d_k^T y_k \right) \|g_{k+1}\|^2 \geq \phi_k \left(\max \left\{ \frac{g_{k+1}^T z_k}{d_k^T z_k}, 0 \right\} \right) - \alpha_k \left(\frac{\|g_{k+1}\|^2}{y_k^T s_k} \right) \theta_{k+1}^{-1} d_k^T y_k \]
For simplicity of notation, we define
\[\mu_k = \max \left\{ \left(\frac{g_{k+1}^T z_k}{d_k^T z_k}, 0 \right) \right\} - \alpha_k \left(\frac{\|g_{k+1}\|^2}{y_k^T s_k} \right), \]
then we have
\[\left(1 - \alpha_k \theta_{k+1}^{-1} d_k^T y_k \right) \|g_{k+1}\|^2 \geq \phi_k \mu_k \theta_{k+1}^{-1} d_k^T y_k, \]
as (38) we have
\[\bar{\phi}_k = \min \left\{ \left(\frac{1}{\mu_k \theta_{k+1} d_k^T y_k} \left(1 - \alpha_k \theta_{k+1}^{-1} d_k^T y_k \right) \|g_{k+1}\|^2, 1 \right) \right\} \]
(48)
Then \(\beta_{k+1}^{NEW} \) satisfies condition (37).

Case (ii). For inexact line search \(d_k^T g_k = 0, s_k^T g_{k+1} > 0 \),
\[\eta_k = \frac{1}{y_k^T s_k} \left(\|g_{k+1}\|^2 - \frac{y_k^T g_{k+1}}{y_k^T s_k} s_k^T g_{k+1} \right) \]
Let \(\eta_k = \frac{1}{y_k^T s_k} \left(\|g_{k+1}\|^2 - \frac{y_k^T g_{k+1}}{y_k^T s_k} s_k^T g_{k+1} \right) \]
This yields,

$$\|g_{k+1}\|^2 - \alpha_k \eta_k \bar{\bar{d}}_{k+1}^T y_k \geq \phi_k \left(\max \left\{ \frac{g_{k+1}^T z_k}{d_k^T z_k}, 0 \right\} - \bar{\bar{d}}_{k+1}^T y_k \right) \geq \phi_k \mu_k \bar{\bar{d}}_{k+1}^T y_k$$

For simplicity of notation, we define

$$\mu_k = \max \left\{ \frac{g_{k+1}^T z_k}{d_k^T z_k}, 0 \right\} - \bar{\bar{d}}_{k+1}^T y_k$$

then we have

$$\|g_{k+1}\|^2 - \alpha_k \eta_k \bar{\bar{d}}_{k+1}^T y_k \geq \phi_k \mu_k \bar{\bar{d}}_{k+1}^T y_k$$

as (38) we have

$$\bar{\phi}_k = \min \left\{ \frac{1}{\mu_k} \left(\|g_{k+1}\|^2 - \alpha_k \eta_k \bar{\bar{d}}_{k+1}^T y_k \right), 1 \right\}$$

Then β_{k+1}^{NEW3} satisfies condition (37).

Outline of NEW3 CG-Algorithm:

Is same as in NEW1 CG-algorithm except that β_{k+1} computed by (46) and (48) or (49). In addition, generate d_{k+1} by (47).

Convergence Results:

Assumption 1.

The level set $\Gamma := \{ x : f(x) \leq f(x_0) \}$ at initial point was bounded.

In some neighborhood N of Γ, the objective function f was continuously differentiable, and its gradient was Lipshitz condition, there exists a constant $L>0$ such that

$$\|g(x) - g(\bar{x})\| \leq L \|x - \bar{x}\|, \quad \forall \ x, \bar{x} \in N$$

Now, we deal with the sufficient descent condition, namely, for some constant $c \geq 0$,

$$g_k^T d_k \leq -c \|g_k\|^2, \quad \text{for all} \ k \geq 0$$

We will show that our algorithm guarantees (51).
Theorem 1.
Suppose that for a starting point x_0, for which Assumption (1) holds. Let the sequence $\{x_k\}$ be generated by any one of the new Algorithms. If we choose β_{k+1} such that $\|g_{k+1}\|^2 \geq \theta_{k+1}^{-1} \beta_{k+1} d_k^T y_k$, $\beta_{k+1} \geq 0$ and the step size α_k satisfied the conditions (40)-(41), suppose that for all $k \geq 0$ there exist a positive constant \bar{c} such that $0 \leq \theta_{k+1} \leq \bar{c}$ then the conjugate gradient method will satisfy the sufficient descent condition (51) with $c = \frac{\bar{c}}{1 + \sigma}$.

Proof.
The proof was done by induction. By noting that $\sigma > 0$ implies $-1 < -\frac{1}{1 + \sigma}$, the result clearly holds for $k=1$ since

$$g_0^T d_0 = -\|g_0\|^2 \leq -\frac{1}{1 + \sigma} \|g_0\|^2 = -c \|g_0\|^2,$$

where $c = \frac{1}{1 + \sigma}$.

Assume that (51) holds for some $k \geq 0$. It follows from (41) that

$$l_k = \frac{g_{k+1}^T d_k}{g_k^T d_k} \in [-\sigma, \sigma] \quad \text{and} \quad d_k^T y_k > 0.$$

Then we have

$$l_k - 1 = \frac{g_{k+1}^T d_k}{g_k^T d_k} - 1 = \frac{g_{k+1}^T d_k - g_k^T d_k}{g_k^T d_k} = \frac{d_k^T y_k}{g_k^T d_k} \neq 0.$$

By (34), we have

$$g_{k+1}^T d_{k+1} = g_{k+1}^T (-\theta_{k+1} g_{k+1} + \beta_{k+1} d_k) = -\theta_{k+1} \|g_{k+1}\|^2 + \beta_{k+1} g_{k+1}^T d_k.$$

Based on the sign of $g_{k+1}^T d_k$, we consider the following two cases.

(i) The case $g_{k+1}^T d_k \leq 0$: We immediately have that

$$g_{k+1}^T d_{k+1} = -\theta_{k+1} \|g_{k+1}\|^2 + \beta_{k+1} g_{k+1}^T d_k \leq -\theta_{k+1} \|g_{k+1}\|^2 \leq -\frac{1}{1 + \sigma} \|g_{k+1}\|^2 \leq c \|g_{k+1}\|^2.$$

(ii) The case $g_{k+1}^T d_k > 0$: The conditions on β_{k+1} and (52) yield
\[g_{k+1}^{T}d_k = -\theta_{k+1} \| g_{k+1} \|^2 + \beta_{k+1} g_{k+1}^{T}d_k \]
\[\leq -\theta_{k+1} \| g_{k+1} \|^2 + \alpha_{k+1} \| g_{k+1} \|^2 \]
\[= \left(1 + \frac{g_{k+1}^{T}d_k}{d_k^{T}y_k} \right) \theta_{k+1} \| g_{k+1} \|^2 \]
\[\leq \frac{1}{1 + \sigma} \| g_{k+1} \|^2 \]
\[\leq \frac{c}{1 + \sigma} \| g_{k+1} \|^2. \]

By noting \(\frac{1}{1 + \sigma} \leq \frac{1}{1 + l_{k}} \leq \frac{1}{1 - \sigma} \), the inequality above implies that
\[g_{k+1}^{T}d_{k+1} \leq \frac{c}{l_{k} - 1} \| g_{k+1} \|^2 \]
\[\leq \frac{c}{l_{k} - 1} \| g_{k+1} \|^2. \]

By summarizing the cases (i) and (ii), the sufficient descent condition (51) holds with \(c \frac{\sigma}{1 + \sigma} \) at the \(k+1 \) iteration, Therefore the proof was completed. \(\square \)

Theorem 2.
Let \(\mathcal{V}(x) \) be uniformly continuous on the level set \(\Gamma = \{ x \in \mathbb{R}^n \mid f(x) < f(x_0) \} \) Let also the angle \(\theta_{k} \) between \(\mathcal{V}(x) \) and the direction \(d_k \) was uniformly bounded away from 90°, i.e., satisfies
\[\theta_{k} \leq \frac{\pi}{2} - \mu \quad \text{for some } \mu > 0. \quad (53) \]
Then \(\mathcal{V}(x_k) \) for some \(k \); or \(f(x) \to \infty; \text{or } \nabla f(x_k) \to 0 \)

Proof. See (Sun and Yuan, 2006)

Theorem 3.
Let \(f(x) \) be continuously differentiable, and Assumption (1) holds. Suppose that for all \(k \geq 0 \) there exists the positive constants \(\gamma, \delta \) and \(M > m > 0 \) such that \(0 < \gamma \leq \delta \) and
\[m \| y \|^2 \leq y^{T} \nabla^2 f(x)y \leq M \| y \|^2, \forall y \in \mathbb{R}^n, x \in \Gamma \quad (53) \]

Then the sequence generate by NEW1 CG-algorithm with exact line search converges to the minimizer \(x^* \) of \(f \).

Proof.
From theorem (2), we know that it is enough to prove that (53) holds, that is, there exists a constant \(\lambda > 0 \) such that
\[-g_{k}^{T}d_{k} \geq \lambda \| g_{k} \| d_{k}, \quad (55) \]
which means \(\cos \theta_{k} \geq \lambda > 0 \).
Then, from Theorem (2), we have $g_k \to 0$ and $(x^*) = 0$ From (47), it follows that $\{x_k\} \to x^*$ which is a unique minimizer.

By using $g_k^T d_k = 0$ and (34). We have

$$g_k^T d_{k+1} = -\overline{\partial}_{k+1} \|g_{k+1}\|^2$$

Then (55) is equivalent to

$$\frac{\|g_{k+1}\|}{\|d_{k+1}\|} \geq \overline{\lambda}.$$ (56)

where $\overline{\lambda} = \lambda / \delta > 0$ by using $\alpha_k = -(g_k^T d_k / d_k^T G_k d_k)$, and (34), it follows that

$$\alpha_k = -\frac{g_k^T d_k}{d_k^T G_k d_k} = \frac{\overline{\partial}_{k+1} \|g_k\|^2}{d_k^T G_k d_k},$$ (57)

where

$$G_k = \int_0^t G(x_t + t\alpha_x d_x)dt$$ (58)

By (58), the integral form of the mean-value theorem is

$$g_{k+1} - g_k = g(x_k + \alpha_x d_x) - g(x_k) = \alpha_k G_k d_k$$ (59)

Then, by (58) and (57), (33) becomes

$$\beta_{k+1}^{NEW} = \phi \left\{ \max \left\{ \frac{g_k^T d_k}{g_k^T g_k}, 0 \right\} \right\} + (1 - \phi) \alpha_k \left\{ \frac{1}{y_{k+1}^T S_k} \left[\left\| g_{k+1} \right\|^2 - \frac{g_k^T g_{k+1}}{y_{k+1}^T S_k g_{k+1}} \right] \right\}$$

where $0 \leq \phi_k \leq 1$

$$|\beta_{k+1}| \leq \frac{\delta \left\| g_{k+1} \right\| G_k d_k}{m \left\| d_k \right\|^2} + \frac{1}{m \left\| d_k \right\|^2} \left(\left\| g_{k+1} \right\| \left\| G_k d_k \right\| \left\| S_k \right\| \left\| g_{k+1} \right\| \right)$$

$$\leq \frac{M \left\| g_{k+1} \right\|}{m \left\| d_k \right\|^2} \left(\frac{M \left\| g_{k+1} \right\|}{m \left\| d_k \right\|^2} \left(1 + \frac{M}{m} \right) \right)$$

$$= \frac{M}{m} \left\| g_{k+1} \right\| \left[\delta + \frac{\left\| g_{k+1} \right\|}{m \left\| d_k \right\|^2} \left(1 + \frac{M}{m} \right) \right]$$

$$= C \frac{M}{m} \left\| g_{k+1} \right\|$$

where

$$C = \delta + \frac{\left\| g_{k+1} \right\|}{m \left\| d_k \right\|^2} \left(1 + \frac{M}{m} \right)$$

Therefore
\[\|d_{k+1}\| \leq \|g_{k+1}\| + \|\beta_{k+1}\| \|d_k\| \leq \delta \|g_{k+1}\| + C_{\xi} \frac{M}{m} \|g_{k+1}\| \leq \left(\delta + C_{\xi} \frac{M}{m} \right) \|g_{k+1}\| = \max \left\{ C_{\xi} \right\} = \delta + C_{\xi} \frac{M}{m} \]

where \(C = \max_{k} \{C_k\} \) and \(\xi = \delta + C_{\xi} \frac{M}{m} \) Which gives.

The above inequality show (56) holds. We complete the proof of the NEW1 CG-algorithm. Similarly we can prove the convergence property of NEW2 and NEW3 CG-algorithms.

Numerical Results

In this section we present the numerical results of the new CG-algorithms. We have modified a readily program written by the Nocedal (1998) to be suitable for the new CG-algorithms NEW1, NEW2 and NEW3 and we have taken different values for the existent constants in the parameters \(\Omega_k, t, \) and \(\rho \). We implemented the new CG-algorithms by using a set of unconstrained optimization test problems (Andrie, 2009).

Table 1: Numerical results of NEW1 algorithm

<table>
<thead>
<tr>
<th>Test Fun.</th>
<th>n</th>
<th>(\Omega_k=0.001)</th>
<th>(\Omega_k=0.5)</th>
<th>(\Omega_k=0.999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended EP1</td>
<td>100</td>
<td>7.931e+02</td>
<td>7.931e+02</td>
<td>7.931e+02</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>7.931e+03</td>
<td>7.931e+03</td>
<td>7.931e+03</td>
</tr>
<tr>
<td>ARWHEAD</td>
<td>800</td>
<td>failed</td>
<td>failed</td>
<td>failed</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>failed</td>
<td>failed</td>
<td>0.000e+00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.870e-08</td>
<td>9.123e-07</td>
<td>1.240e-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.763e-13</td>
<td>8.770e-06</td>
<td></td>
</tr>
<tr>
<td>Extended Powel</td>
<td>100</td>
<td>failed</td>
<td>failed</td>
<td>failed</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>failed</td>
<td>failed</td>
<td>1.452e-07</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>failed</td>
<td>failed</td>
<td>5.071e-07</td>
</tr>
<tr>
<td>Miele</td>
<td>100</td>
<td>failed</td>
<td>failed</td>
<td>failed</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>failed</td>
<td>failed</td>
<td>1.452e-07</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>failed</td>
<td>failed</td>
<td>5.071e-07</td>
</tr>
<tr>
<td>Diagonal3</td>
<td>400</td>
<td>failed</td>
<td>failed</td>
<td>failed</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>failed</td>
<td>failed</td>
<td>0.000e+00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.95e-05</td>
<td>4.95e-05</td>
<td>4.95e-05</td>
</tr>
<tr>
<td>Extended Hiebert</td>
<td>700</td>
<td>8.750e+11</td>
<td>8.750e+11</td>
<td>8.750e+11</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>1.125e+12</td>
<td>1.125e+12</td>
<td>1.125e+12</td>
</tr>
<tr>
<td>Extended Himmelblau</td>
<td>300</td>
<td>8.748e-11</td>
<td>1.077e-14</td>
<td>2.645e-16</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>2.931e-11</td>
<td>2.159e-13</td>
<td>4.660e-13</td>
</tr>
<tr>
<td>Extended Trigonometric</td>
<td>200</td>
<td>failed</td>
<td>failed</td>
<td>failed</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>failed</td>
<td>failed</td>
<td>failed</td>
</tr>
</tbody>
</table>

Table 2: Numerical results of NEW2 algorithm

<table>
<thead>
<tr>
<th>Test Fun.</th>
<th>n</th>
<th>(\Omega_k=0.5)</th>
<th>(\Omega_k=0.999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDixon</td>
<td>200</td>
<td>7.931e+02</td>
<td>failed</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>7.931e+03</td>
<td>failed</td>
</tr>
<tr>
<td>DIXMAANA</td>
<td>100</td>
<td>failed</td>
<td>failed</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>failed</td>
<td>failed</td>
</tr>
<tr>
<td>ARWHEAD</td>
<td>100</td>
<td>failed</td>
<td>failed</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>failed</td>
<td>1.452e-07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.888e-08</td>
<td>5.822e-07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.763e-13</td>
<td>8.770e-06</td>
</tr>
<tr>
<td>Extended Himmelblau</td>
<td>600</td>
<td>3.840e-11</td>
<td>1.077e-14</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>2.931e-11</td>
<td>2.159e-13</td>
</tr>
<tr>
<td>Extended EP1</td>
<td>100</td>
<td>failed</td>
<td>failed</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>failed</td>
<td>failed</td>
</tr>
<tr>
<td>Miele</td>
<td>100</td>
<td>3.840e-11</td>
<td>1.077e-14</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>2.931e-11</td>
<td>2.159e-13</td>
</tr>
<tr>
<td>Extended Trigonometric</td>
<td>500</td>
<td>failed</td>
<td>failed</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>failed</td>
<td>failed</td>
</tr>
</tbody>
</table>

4238
Conclusions:
We have concluded that more large values of Ω_k gave us better results for NEW1 CG-algorithm and we have got a robust results when we took more large value of Ω_k with more small value of t for NEW2 CG-algorithm while for NEW3 CG-algorithm we have taken more large values of Ω_k, and we have chosen two choices for the arbitrary vector u_k ($u_k=y_k$ and $u_k=s_k$).

The suggested algorithms like the original algorithm for some test functions don't converge within given accuracy in some test problems.

We have observed by taking large Ω_k that the suggested algorithms arrive at the limit point while the original algorithm failed.

REFERENCES

