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Some Sufficient Conditions for Persistent Splicing Systems 
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Abstract: Splicing system was first defined by Head in 1987 as a mathematical model of the generative
capacity of a biological system containing DNA molecules in the presence of appropriate enzymes. The
formalism of splicing system is illustrated under the framework of Formal Language Theory which is
a branch of applied discrete mathematics and theoretical computer science. In fact, this is a mathematical
model for the recombinant behavior of DNA molecules under the influence of restriction enzymes. In
this sense, DNA molecules and restriction enzymes are associated with strings and rules, respectively.
There are many different types of splicing systems that have been defined by Head and other
mathematicians. Some important ones are  persistent, permanent and strictly locally testable splicing
systems. In this paper, we provide some sufficient conditions for splicing systems to be persistent.
Besides, some real examples are provided to support the theorems in the biological sense.
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INTRODUCTION

DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all other organisms. The
information in DNA is stored as a code made up of four chemical bases: adenine (A), guanine (G), cytosine (C),
and thymine (T). The order, or sequence, of these bases determines the information available for building and
maintaining an organism, similar to the way in which letters of the alphabet appear in a certain order to form
words and sentences. DNA bases pair up with each other, A with T and C with G, to form units called base pairs. 

Each base is also attached to a sugar molecule and a phosphate molecule. Together, a base, sugar, and
phosphate are called a nucleotide. Nucleotides are arranged in two long strands that form a spiral called a double
helix. The structure of the double helix is somewhat like a ladder, with the base pairs forming the ladder’s rungs
and the sugar and phosphate molecules forming the vertical sidepieces of the ladder. So DNA can be represented

as strings over four alphabets, i.e.                                             . A restriction enzyme is an enzyme that{[ ],[ ],[ ],[ ]}D A T C G G C T A

cuts double-stranded or single stranded DNA at specific recognition nucleotide sequences, known as restriction
sites. The recombination behavior of restriction enzymes was modeled in the form of splicing rules by Head. In
this research, we investigate some characteristics of persistent splicing systems.

II. Basic  Definitions and Notations:
This section gives the main concepts and notations that are used in this paper. Definiton 2.1. (P. Linz, 2001)

 (Alphabet, String) A finite, nonempty set A of symbols is called alphabet. Any finite sequence of symbols from
alphabet is called a string.We use 1to denote the empty string which is a string with no symbols at all. If A is
an alphabet, we use A* to denote the set of strings obtained by concatenating zero or more symbols from A.

Definition 2.2. (T. Head, 1987) (Splicing System, Splicing Language):
 A splicing system  S = (A,I,B,C) consists of a finite alphabet A, a finite set I of initial strings in A* , and

finite sets B and C of triples (C,x,d) with c, x and d in  A*. Each such triple in B or C is called a pattern. For
each such triple the string cxd is called a site and the string x is called a crossing. Patterns in B are called left
patterns and patterns in C are called right patterns. The language L = (LS) generated by S consists of the strings
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in I and all strings that can be obtained by adjoining the words ucxfq and pexdv to L, whenever ucxdv and pexfq
are in L and (c,x,d) and (e,x,f) are patterns of the same hand. A language L is a splicing language if there exists
a splicing system S for which 

L = L (S).

Definition 2.3. (T. Head, 1987) (Persistent):
Let S = (A,I,B,C) be a splicing system. Then S is persistent if for each pair of strings ucxdv, and pexfq, in 

A* with (c,x,d) and (e,x,f) patterns of the same hand: If y is a subsegment of ucx (respectively xfq) that is the
crossing of a site in ucxdv pectively pexfq) then this same subsegment y of ucxfq contains an occurrence of the
crossing of a site in ucxfq. 

III. Main Results:
In this section, we provide some sufficient conditions in which splicing systems are persistent as well as real

examples that illustrate the theorems.

Theorem 3.1.  
Let                         be  a   splicing   system such  that .                                 If   elements  of  BS (A, I, B, )  { 1i i iB (c , x , d ): i n}  

do  not  have  the  same crossing  and  ci  (respectively  di)  is  not  a  factor  of   cj   (respectively  dj), 

                               then S is persistent.1 i,j n (i  j)   

Proof. 
To show that S is persistent, the patterns with the same crossings should be considered. Since the crossings 

of S are disjoint, each pattern can be considered only with itself. So for every pair of strings                  andi i iuc x d v

                      such that  
*

i i ipc x d q A i i i(c , x , d )  B:

If Y is a subsegment of           (respectively )           that is the crossing of a site in                 (respectivelyi iuc x i ix d q i i iuc x d v

              ) then according to B there exists        s           much that    Y = XK   and  ckxkdK  is  a factor of i i ipc x d q 1  k  n 

               (respectively               ). i i iuc x d v i i ipc x d q

First we prove that  ckxkdK is a factor of ui ci xi di vi (respectively ci xi di qi ):
In the case, ck xk dK is not a factor of ui ci xi di  (respectively ci xi di qi ): since, (respectively  xk dk) is a factor 

of  ui ci  xi   (respectively xi di qi) and  simultaneously ck xk dK  is also a  factor of                   (respectivelyi i iuc x d v

               )i i ipc x d q

Thus, dk should begin before or from di and continue after di until reach v and therefore dk will be a factor
of di (respectively, cK should begin before ci and end after it and therefore cK will be a factor of ci ). But this
contradicts the hypothesis of the theorem, so this case does not happen. Thus, ck xk dK is also a factor of  Ui ci

di  xi qi  and it means that xK contains an occurrence of the crossing of a site in  Ui ci di  xi qi . Thus S satisfies
the definition of persistent. 

Example 3.2. 
Let S be the splicing system associated with the restriction enzymes {AgeI, MseI} that is,  

                          such that                                             and I is an arbitrary subset of A* and( , , , )S D I B  {[ ],[ ],[ ],[ ]}D A T C G G C T A

                                               . {([ ],[ ][ ][ ][ ],[ ]),B A T C G C G G C G C T A ([ ],[ ][ ],[ ])}T A T A A T A T
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Since the crossings of Sare disjoint and              and            are not factors of each other, according to[ ]A T [ ]T A
Theorem 3.1,  S is persistent.

Theorem 3.3: 

Let                            be a splicing system such thatS (A, I, B, ) 

 .                                                                           . Then S is persistent.{ 1 {(1, ,1) :1i i i iB (c , x , d ): i n} x i n}     

Proof. 
To  show  that   S  is persistent, according to  the definition,  the patterns with the same crossings should

be  considered.  So  suppose  that              and                 be  two  arbitrary  strings  from  A*  such  thati iuc xd v j jpc xd q

                and                        have the same crossing x and by splicing them the string               will be ( , , )i ic x d ( , , )j jc x d B i juc xd q

obtained.  Now,  if  Y  is  a  subsegment  of            (respectively           )  that  is  the  crossing  of a site iniuc x jxd q

              (respectively                )  then  according  to  B  there exists                such  that             andi iuc xd v j jpc xd q 1 k n  ky x

                                       Now Xk is a factor of               and it is the crossing of  the  site    .          ( , , ), (1, ,1) .k k k kc x d x B i juc xd q (1, ,1)kx

So S is persistent.

Example 3.4.  
Given  a  set  consisting  of  four  restriction  enzymes:  BamHI,  BglII,  BclI  and  DpnII. Since there are

four enzymes in the set, there are 24 = 16 subsets for this set of four enzymes. Let B be any subset of these sets
that contain DpnII. Every splicing system with such set B as its right patterns is persistent.Indeed, the cleavage
patterns of the enzymes BamHI, BglII, BclI and DpnII  are 

                                                                 ,([ ],[ ][ ][ ][ ],[ ])A T G C A T T A C G T A

 ([ ],[ ][ ][ ][ ],[ ]) ,G C G C A T T A C G C G

                                                                 and                                                  respectively.([ ],[ ][ ][ ][ ],[ ])T A G C A T T A C G A T (1,[ ][ ][ ][ ],1)G C A T T A C G

So for every such splicing system the conditions of the previous theorem are satisfied and it is persistent.

Theorem 3.5.

Let                           be a splicing system such that S (A, I, B, ) 

                                                                                                                 such  that x1 is not 1 2{ 1i iB (c , x x , d ): i n}     1 2 1 2{(1, ,1),( ,1, )}x x x x *
1 2, , ,i ic d x x A

a factor of  x2 and vice versa. Then S is persistent. 
Proof. To show that S is persistent, the patterns with the same crossings should be considered. Here two cases
can happen.

Case 1: 
Suppose  that                     and                       be  two  arbitrary  strings  from  A*  with  1 2i iuc x x d v 1 2j jpc x x d q

                                                    with  the  same  crossing  x1 x2 and with  splicing  them the  string1 2 1 2( , , )and( , , )i i j jc x x d c x x d B

                   will be obtained. Now, if  y is a subsegment of              (respectively               ) that is the 1 2i juc x x d q 1 2iuc x x 1 2 jx x d q
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crossing of a site in                   (respectively                    ) then according to B, y = x1 x2 or 1. If  y = x1 1 2i iuc x x d v 1 2j jpc x x d q

x2 , it is the crossing of the site (1,x1 x2, 1) in                   and so  the  desired result  is satisfied. If  y = 1,1 2i juc x x d q

because  y is crossing of a site in                    it should follow x1 and precede x2. Therefore,              cannot 1 2i iuc x x d v 1 2iuc x x

be in the form,                  (in other word, although we can consider                                but this 1 is not 1 2iuc x x y 1 2 1 21i iuc x x uc x x

the y that we mean here). From this and the previous  hypothesis that  y  is  in              and  simultaneously 1 2iuc x x

crossing of a site in                   , it can be concluded that x1 y x2  is a factor of              and so it is a factor 1 2i iuc x x d v 1 2iuc x x

of  .                  Thus, y contains an occurrence of the crossing  of a site in                     and the desired 1 2i juc x x d q 1 2i juc x x d q

result is satisfied. 

Case 2: 
Suppose              and                be two arbitrary  strings  from  A*  with                        and  with1 21ux x v 1 21px x q 1 2( ,1, )x x B

splicing them the string               will be  obtained. Similarly, if y is a  subsegment  of           (respectively 1 21ux x q 11ux

        ) that is the crossing of a site  in               (respectively               )  then according to  B, y =  x1 x2 21x v 1 2ux 1x v 1 21px x q

or 1.
If y = x1 x2, it is the crossing of the site (1,x1 x2, 1) in               and so the desired result is satisfied.1 21ux x q

If y = 1, because y is crossing of a site in                it should follow x1 and precede x2. On  the  other  hand,1 21ux x v

since y = 1 should be in         , x1 y x2 is a factor of              and it cannot continue until v. Indeed, if  y is11ux 1 21ux x

located   between ith and ( i + 1)th element  of               ,                                      so when x2 follows y 11ux 1 2 1 2i ux i x ux x   

it cannot go after           Therefore, y is the crossing of the site x1 y x2 in             and the desired result is1 2ux x 1 21ux x q
satisfied. 

Example 3.6. 
Given a set consisting of  four  restriction  enzymes:  DpnI,  DpnII,  BamHI  and  BclI.  Since  there are 

four enzymes in the set, there are 24 = 16 subsets for this set of four enzymes. Let B be any subset that contains
at least {DpnI,DpnII}. Every splicing system with such set B as its right patterns is persistent. Indeed, the
cleavage patterns of the enzymes, DpnI, DpnII, BamHI and BclI are :

                           ([ ][ ],1,[ ][ ]),(1,[ ][ ][ ][ ],1),G C A T T A C G G C A T T A C G

                                                                  and   ,                                                     ([ ],[ ][ ][ ][ ],[ ])G C G C A T T A C G C G ([ ],[ ][ ][ ][ ],[ ])T A G C A T T A C G A T

respectively. So for every such splicing system the conditions of the previous theorem are satisfied and it is
persistent

Conclusion:
This paper investigates on persistent splicing systems and introduces some sufficient conditions for a splicing

system to be persistent. Some real examples are also presented to illustrate this theory.
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