Fast Intra- and Inter-Prediction Mode Decision of H.264/AVC for Medical Frame Compression based on Region of Interest

1Mehdi Jafari and 2Shohreh Kasaei

1Department of Electrical Engineering, Islamic Azad University, Kerman Branch, Kerman, Iran
2Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

Abstract: This paper aims at applying H.264/AVC in medical video compression applications and improving its compression performance with higher perceptual quality and lower coding complexity. We propose a new method that uses lossless compression in the region of interest (ROI) and very high rate lossy compression in other regions. The propose method achieves a fast intra- and inter-prediction mode decision that is based on encountering coarse MBs for intra- and inter-prediction mode decision of the background region and fine MBs for the ROI region. The MBs of the background region are encoded with the maximum quantization parameter allowed by H.264/AVC in order to maximize the number of null coefficients. Also, in order to further reduce the computational complexity, a two-adaptive search range decision method (proposed previously by the authors) is enhanced using the ROI concept. Experimental results show that the proposed algorithm achieves a higher compression rate on medical videos with a higher quality of ROI with low coding complexity when compared to other standard algorithms reported in the literature and our previous algorithm.

Key words: H.264/AVC, intra- and inter-prediction, medical video compression, adaptive search range decision, region of interest.

INTRODUCTION

Over the past 20 years, information technology has facilitated the development of digital medical imaging. This development has mainly concerned computed tomography (CT), magnetic resonance imaging (MRI), echocardiography, positron emission tomography (PET), mammography, diagnostic ultrasound imaging, video endoscopies and nuclear medical imaging with single photon emission computed tomography (SPECT). All these processes are producing ever-increasing quantities of images. However, compression, storage and communication of medical images are related functions for which demand has recently increased significantly. In medical videos, compression of videos with a high quality, high compression ratio and low computational complexity for real-time applications is a very challenging task. Different efforts have been made to establish a common video compression standard for medical applications. The digital imaging and communications in medicine (DICOM) is the most commonly used standard (NEMA, 2004; DICOM, 2004), which facilitates the distribution and viewing of medical image/video sequences including echocardiography and CT (Hongtao, Yu. And Zhipping lin, 2005). The recommended compression methods in DICOM are JPEG2000 and MPEG-2. To address the needs of different applications, both the international telecommunication union (ITU) and the international organization for standardization (ISO) have released standards for still image and video compression; such as H.261, H.263, H.264/AVC, MPEG-1, MPEG-2 and MPEG-4. In (Lau, c. and J.E. Carbol, 2000; Barbier, P. and M. Alimento, 2004) MPEG-4 has been used for compression of ultrasound and echocardiography sequences, respectively, for both archiving and transmission purposes. (Morsalin, U., 2010) Introduce an advanced video transmission platform based on H.264/AVC for telemedicine. H.264/AVC, the newest video coding standard is developed by the joint of video teams of ISO/IEC MPEG and ITU_T VCEG as the international standard 14496-10 (MPEG-4 part 10) advanced video coding (AVC) (Pan, F. and X. Lin, 2005; Wiegand, T. 2003); which has been very successful in many applications including digital media storage, video streaming, TV, and so on. This paper aims at applying H.264 in medical video compression applications and improving the H.264 rate control algorithm with better perceptual quality. H.264/AVC has gained more and more attention; mainly due to its high coding efficiency, minor increase in decoder complexity compared to existing standards, adaptation to delay constraints, error robustness, and network friendliness (Pan, F. and
Table 1: Average bit-rate reduction of different video coding standards.

<table>
<thead>
<tr>
<th>Standard</th>
<th>MPEG-4/ASP</th>
<th>H.263/HLP</th>
<th>MPEG-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.264/AVC</td>
<td>35%</td>
<td>47%</td>
<td>60%</td>
</tr>
<tr>
<td>MPEG-4/ASP</td>
<td>----</td>
<td>15%</td>
<td>40%</td>
</tr>
<tr>
<td>H.263/HLP</td>
<td>----</td>
<td>----</td>
<td>30%</td>
</tr>
</tbody>
</table>

To achieve an outstanding coding performance, H.264/AVC employs several powerful coding techniques; such as directional prediction of intra-coded blocks, inter-prediction with variable block-size motion compensation, multi-reference frame motion estimation, motion vectors with quarter-pel accuracy, in-loop deblocking filter, 4×4 integer transform, and the forth. The improvement in coding performance comes mainly from the intra- and inter-prediction part. H.264/AVC employs the Lagrange RDO method to achieve the best coding mode of intra- and inter-prediction with highest coding efficiency. The RDO technique requires a lot of computations since it tests the encoding process with all possible coding modes of intra- and inter-coding, and calculates their RD costs to choose the mode having the minimum required bitrate. The run-time percentage of each function is shown in Figure 1. As shown in this figure, inter prediction using motion estimation and intra predictions are the most computationally intensive parts.

Fig. 1: Run-time percentages of functional blocks in H.264/AVC baseline encoder (Huang, yu. And Y. Bing 2006).

Thus, the computational burden of these types of brute force-searching algorithm is far more demanding than any existing video coding algorithm.

The challenging topic of fast mode selection for intra- and inter-prediction mode decision for medical videos is considered in this paper. Also, we propose a new method that uses lossless compression in the region of interest (ROI) with high quality, and lossy compression in other regions with very high compression ratio and reasonably good quality. To reduce the computational complexity, many algorithms have been proposed. For fast inter-prediction mode decision, the early termination technique (Tourapis, P. and H.C., toupis, 2003) reduces the number of potential prediction modes. In (Lim, K. and S. Wu, 2003) a classification method is proposed. Recently fast inter-mode selection algorithms were proposed in (Kim, H., 2004; Kim, Y.H. 2004; Yu, A. 2004) to alleviate the encoder complexity due to the motion estimation and inter-mode decisions. In (Dia, Q., 2004), a fast inter-prediction mode decision based on pre-encoding process is presented.

Fast intra-mode decision algorithms using edge detection histogram and local edge detection are proposed in (Pan, F., 2005; Pan, F., 2003; Pan, F., 2004). However, their preprocessing stages still consume a coding time to detect the edge direction and to classify it into a limited direction. Also, there exist fast algorithms to select the optimal intra-prediction mode using simple directional masks in (Kim, J., 2005) with time reduction of 70%, and statistical-based methods in (Garg, R., 2005) with time reduction of 45%. Another fast intra-mode decision scheme is proposed in (Jeon, B., 2003) where the encoding speed is approximately 30% faster than that of the RDO method. A new fast intra-prediction algorithm based on macroblock properties (FIPAMP) is presented in (Yang, C.,2004). This algorithm achieves 10% to 40% of computation reduction while maintaining similar PSNR and bitrate performance of H.264/AVC codes. In (Meng, B., 2003), an efficient intra-prediction (EIP) algorithm based on early termination, selective computation of highly probable modes, and partial computation of cost function is presented. Also, an improved cost function to increase the coding performance is proposed in (Tseng, C., 2004). Also, in (Hsu, C., 2006), a fast algorithm based on local edge information
is obtained by calculating edge feature parameters. In (Goktruk, S., 2001) an algorithm for Medical image compression based on region of interest is proposed.

In (Jafari, M. and S. Kasaei, 2008) the authors proposed a new approach for both inter-and intra-mode size selection. For intra-prediction mode decision, we improved Pan’s method (Pan, F., 2005; Pan, F., 2003; Pan, F., 2004), and for inter-prediction mode decision, the split/merge procedure was used. Also, an effective method for accelerating the multiple reference frames ME without significant loss of video quality was proposed that was based on analyzing the available information obtained from previously processed frames. In (Jafari, M. and S. Kasaei, 2010) the authors proposed a two-step adaptive search range decision algorithm to improve the proposed algorithm in (Jafari, M. and S. Kasaei, 2008). In the first step, the proposed adaptive algorithm determined the search range for current MB according to MVs of previous MBs. In the second step, the length of MV obtained in the current reference frame was considered as the maximum size of the search window for motion estimation in the previous reference frame. Also, in (Jafari M., and S. Kasaei, 2011), in order to further reduce the computational complexity, a two-adaptive search range decision method is enhanced using ROI concept. This paper aims at applying H.264 for medical video compression and improving the previous two-step adaptive method using several new algorithms for lossless region-of-interest compression. The proposed encoding scheme is suitable for medical applications, where higher resolution and higher quality ROI is a useful functionality for detail analysis. We have verified the different parts of the proposed algorithm step by step by implementing it on the JM7.1 reference software and have compared its performance with other available fast algorithms. Experimental results on medical videos show that the proposed method with a high compression performance reduces the encoding cost up to 60% with a high quality of ROI and a negligible loss in non-ROI reconstructed video quality.

H.264/AVC Overview:

H.264/AVC, the newest video coding standard is developed by the joint of video teams of ISO/IEC MPEG and ITU_T VCEG as the international standard 14496-10 (MPEG-4 part 10) advanced video coding (AVC). H.264 aims at providing functionality similar to existing video coding standards H.26L and MPEG-x but with significantly better compression performance. Some new techniques, such as Intra prediction coding, adaptive block size motion compensation, multiple reference pictures and content adaptive binary arithmetic coding (CABAC), are used in this standard (figure 2). In common with earlier standards, H.264/AVC does not define the encoder, but defines the syntax of an encoded video bitstream together with the method of decoding the bitstream (Jafari, M. and S. Kasaei, 2006; Jafari, M. and S. Kasaei, 2005). The codec combines intra- and inter-picture prediction to exploit the spatial and temporal redundancy. The proposed algorithms in this work are based on coarse MBs for intra- and inter-prediction of the non-ROI and finer MBs of ROI. Also, the MBs of non-ROI, are encoded with the maximum quantization scale allowed by H.264 in order to maximize the number of null coefficients. Therefore, the intra- and inter-prediction mode decision methods and quantization parameters are the key factors of proposed algorithms that are described in the following subsections.

Fig. 2: H.264/AVC encoder.
Intra-Prediction Mode Decision:

Intra-prediction is based on the observation that adjacent macroblocks tend to have similar properties. Prediction may be formed for each 4×4 luma block (I4 MB), 16×16 luma MB (I16MB), and 8×8 chroma block.

For prediction of 4×4 luminance blocks, the 9 directional modes consist of a DC prediction (Mode 2) and 8 directional modes (labeled 0, 1, 3, 4, 5, 6, 7, and 8) as shown in Figure 3(a). In Figure 3(b), the block (values of pixels “a” to “p”) is to be predicted using A to Q pixel values.

Fig. 3: (a) Intra-prediction modes for 4×4 luminance blocks. (b) Labeling of prediction samples.

The DC prediction (mode 2) is useful for those blocks with little or no local activities, the other modes (1-8) may only be used if all required prediction samples are available. For regions with less spatial details (i.e., flat regions), H.264/AVC supports 16×16 intra-coding; in which one of four prediction modes (DC, vertical, horizontal, and planar) is chosen for prediction of the entire luminance components of the macroblock as shown in Figure 4.

Fig. 4: 16×16 prediction modes. (a) Mode 0 (vertical). (b) Mode 1 (Horizontal). (c) Mode 2 (DC). (d) Mode 3 (plane).

H.264/AVC supports four chroma prediction modes for 8×8 chrominance blocks, similar to that of the I16MB prediction, except that the order of mode numbers is different: DC (Mode 0), horizontal (Mode 1), vertical (Mode 2), and plane (Mode 3). This paper selects I4MB and I16MB for ROI and only I16MB for non-ROI to reduce the computational complexity of intra-prediction.

Inter-Prediction Mode Decision:

Inter-prediction is based on using motion estimation and compensation to take advantage of temporal redundancies that exist between successive frames. The important differences from earlier standards include the support for a range of block sizes (down to 4×4), multiple reference frames, and fine sub-pixel motion vectors (1/4 pixel in the luma component).

H.264/AVC supports motion compensation block sizes ranging from 16×16 to 4×4 luminance samples with many options between the two. The luminance component of each macroblock (16×16 samples) may be split up in 4 ways as 16×16, 16×8, 8×16 or 8×8. If the 8×8 mode is chosen, each of the four 8×8 macroblock partitions within the macroblock may be split in a further 4 ways as 8×8, 8×4, 4×8 or 4×4. The four macroblock type sizes and four macroblock subtype sizes are shown in Figure 5. These partitions and sub-partitions give rise to a large number of possible combinations within each macroblock.

A separate motion vector is required for each partition or sub-partition. Each motion vector must be coded and transmitted; in addition, the choice of partition(s) must be encoded in the compressed bitstream. Choosing a large partition size (e.g., 16×16, 16×8, 8×16) means that a small number of bits are required to indicate the choice of motion vector(s) and the type of partition; however, the motion compensated residual may contain a significant amount of energy in frame areas with high details. Choosing a small partition size (e.g., 8×4, 4×4,
etc.) may give a lower energy residual after motion compensation, but requires a larger number of bits to signal the motion vectors and the choice of partition(s). The choice of partition size therefore has a significant impact on compression (a small partition size may be beneficial for detailed areas). H.264/AVC as an enhanced reference picture selection as H.263++ enables efficient coding by allowing an encoder to select (for motion compensation purposes) among a large number of pictures that have been decoded and stored in the decoder. This paper describes a new method to achieve fast inter-prediction mode decision that is based on coarse MBs (16×16 to 8×8) of background region and finer MBs (16×16 to 4×4) for ROI.

Quantization Parameter and Rate Control:
A rate control algorithm dynamically adjusts encoder parameters to achieve a target bitrate (TBR). In particular, the quantization parameter (QP) regulates the TBR. When QP is very small, almost all that detail is retained. As QP is increased, some of that detail is aggregated so that the bit rate drops – but at the price of some increase in distortion and some loss of quality. In H.264/AVC residuals are transformed into the spatial frequency domain by an integer transform, named H transform that approximates the familiar discrete cosine transform (DCT). The QP determines the step size for associating the transformed coefficients with a finite set of steps. Large values of QP represent big steps that crudely approximate the spatial transform, so that most of the signal can be captured by only a few coefficients. Small values of QP more accurately approximate the block's spatial frequency spectrum, but at the cost of more bits. In this paper, to regulate the TBR, the MBs of the background region are encoded with the maximum quantization parameter allowed by H.264 (QP=51), in order to maximize the number of null coefficients.

RDO Procedure:
For I-frames, all MBs are predicted as intra and for P-frames all MBs are predicted as intra or inter. H.264/AVC encodes the best mode using all mode combinations of luma and chroma, and chooses the one that gives the best RDO performance. The best prediction mode among all possible intra-/inter-predictive modes is achieved by minimizing

\[
J(s,c,\text{MODE } | \text{QP}, \lambda) = \text{SSD}(s,c,\text{MODE } | \text{QP}) + \lambda \text{R}(s,c,\text{Mode } | \text{QP})
\]

where QP is the macroblock quantization parameter, \(\lambda = 0.85 \times 2(\text{QP} - 12)/3 \) is the Lagrangian multiplier, and MODE indicates the different prediction modes of a macro block. R (\(i.e. \)) represents the rate (\(i.e. \), the number of bits associated with chosen MODE). SSD is defined as
\[SSD(s, c, \text{MODE} \mid QP) = \sum_{x=1, y=1} \left(S^y(x, y) - C^y(x, y, \text{MODE} \mid QP) \right)^2 + \sum_{x=1, y=1} \left(S^x(x, y) - C^x(x, y, \text{MODE} \mid QP) \right)^2 + \sum_{x=1, y=1} \left(S^u(x, y) - C^u(x, y, \text{MODE} \mid QP) \right)^2\]

According to the RDO procedure of intra-prediction in H.264/AVC, the number of mode combinations for luma and chroma blocks in a macroblock is \(N_8 \times (16 \times N_4 + N_16)\), where \(N_8\), \(N_4\), and \(N_16\), denote the number of modes for 8\times8 chroma blocks, and 4\times4 and 16\times16 luma blocks, respectively (Changsung, K., 2003). Also, according to the RDO procedure of inter-prediction, for \(M\) block modes, \(N\) reference frames, and \(+W\) search range, \(M \times N \times (2w+1)^2\) positions should be tested for a single reference frame and a single block mode. This makes the complexity of the encoder extremely high. In order to reduce the encoding complexity with little RD performance degradation, fast intra- and inter-prediction mode decision methods are proposed.

Proposed Fast Intra-prediction Mode Decision Methods:

This section presents a new fast intra-prediction algorithm. The proposed method is based on several facts that we have observed from the statistics of different sequences as follows:

1. Figure 6 shows the total number of 4\times4 and 16\times16 intra-coded macroblocks at different QPs. As can be seen from this figure, fast detection of 4\times4 intra-prediction mode can significantly improve the encoding speed at low QPs, while 16\times16 intra-prediction can improve the speed at large QPs.

2. The prediction modes of each block are correlated by those of neighboring 4\times4 luminance blocks.
3. Normally, pixels along the direction of local edges have similar values. Therefore, a good prediction can be achieved by predicting the pixels using the neighboring pixels that lie in the same edge directions.
4. The optimal mode (found by a full-search) and other “good” (second or third best) modes are most likely to have similar directions.
5. The directional features of 4\times4 blocks can be preserved roughly after down-sampling.
6. Experimental results show that the reference pixels of a 4\times4 luma block are likely to be similar to each other [22].

Based on these observations, we have proposed a fast intra-prediction mode selection algorithm. In this section, some new ideas are combined with the fast mode selection algorithm introduced in [1, 6, 7] to improve their efficiency.
Improved Pan’s Method for Fast Decision of I4MB:

Pan presented a fast mode selection for intra-prediction method in (Pan, F., 2005), in which the average edge direction of a given block is measured. The Sobel operators are first used to obtain the directional vector of each pixel in a block by

\[\vec{D}_{i,j} = \{dx_{i,j}, dy_{i,j}\} \]

where the Sobel operators are defined by

\[
\begin{align*}
 dx_{i,j} &= P_{i-1,j+1} + 2 \times P_{i,j+1} + P_{i+1,j+1} - P_{i-1,j-1} - 2 \times P_{i,j-1} - P_{i+1,j-1} \\
 dy_{i,j} &= P_{i+1,j-1} + 2 \times P_{i+1,j} + P_{i+1,j+1} - P_{i-1,j-1} - 2 \times P_{i-1,j} - P_{i-1,j+1}
\end{align*}
\]

The amplitude and angle of each edge vector can be calculated using

\[Amp(\vec{D}_{i,j}) = |dx_{i,j}| + |dy_{i,j}| \]

and,

\[Ang(\vec{D}_{i,j}) = \frac{180^\circ}{\pi} \times \arctan\left(\frac{dy_{i,j}}{dx_{i,j}}\right) \]

where \(Ang(.) \) is fitted into one of the 8 modes.

Then, the edge direction histogram (EDH) of the block is found (that indicates the number of pixels with similar edge directions). Therefore, the cell \(k \) with the maximum amount indicates a strong edge along that direction in the block and thus is assigned as the dominant block direction. Figure 8 shows the EDH of the image shown in Figure 7.

Fig. 7: An example of 4×4 edge patterns and their dominant direction.

Fig. 8: Edge direction histogram of Figure 7.

In the Pan’s method, for I4MB there are 4 modes (1 DC, 1 from maximum amplitude of EDH, and its 2 neighbors) with 2 modes (1 DC mode and 1 directional) for each 16×16 luma block and 8×8 chroma block. Here, to improve the Pan’s method, we will eliminate the DC mode from the candidates if the direction of the block is obvious, and otherwise, we choose only the DC mode. To check whether the DC of the block is clear or not, the \textit{diff} value, given below is computed to check whether it is smaller than a predetermined threshold or not, using
The improved Pan’s method is proposed as follows:
1. Find the maximum value of the edge directional histogram \(H \). Denote the corresponding mode by \(M_1 \).
2. If \(\text{diff} > T \), carry out the RDO procedure for 3 modes at the most (\(M_1 \) and its two neighbors).
3. Else, if \(\text{diff} < T \), carry out the RDO procedure for two candidate modes at the most (\(M_1 \) and DC mode).
4. For 116MB, based on the same observation as above, and after down-sampling by a factor of 2, if \(\text{diff1} > T_1 \), consider only the primary prediction mode decided by edge direction histogram as a candidate for the best prediction mode. The \(\text{diff1} \) in this case is computed by

\[
\text{diff1} = \sum_{i=0}^{64} |\text{avg} - p_i| \\
\text{avg} = (\sum_{i=0}^{64} p_i + 32) >> 6
\]

If \(\text{diff1} < T_1 \), choose the maximum prediction mode and the DC mode. Extract the maximum prediction mode as I4MB but with DC and only 3 directions of intra16.

For 8×8 chroma block, and after down-sampling by a factor of 2, use the same procedure as I16MB by using Eq. (7).

Pan’s method can reduce RDO calculation from 592 times to 132. The number of candidate modes and the RDO calculation in the best and worst cases are listed in Table 2. This table summarizes the number of candidates selected for RDO calculation based on EDH. As can be seen from this table, the encoder with the fast mode decision algorithm needs to perform only 33 or 100 RDO calculations, which are much less than that of Pan’s method (132) and current H.264 video coding (592).

<table>
<thead>
<tr>
<th>Block Size</th>
<th>RDO</th>
<th>Pan’s Method</th>
<th>Proposed Method (min)</th>
<th>Proposed Method (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4×4 (Y)</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>16×16 (Y)</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8×8 (U/V)</td>
<td>4</td>
<td>3 or 2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Fast Intra-Prediction Mode Selection based on Statistical Properties of Adjacent MBs and Reference Pixels:

The method proposed in this section analyzes the characteristic of reference pixels and uses the similarity between adjacent MBs, while the improved Pan’s method analyzes the characteristic of the 4×4 block itself. As a result, the combination of these three methods can achieve better results. The proposed algorithm is as follows.
1. Find the maximum value of EDH. Denote the corresponding mode by \(M_1 \).
2. If the modes for one of the top or left blocks are \(M_1 \), then choose \(M_1 \) as the best candidate mode for the current block. Go to step 7.
3. For 4×4 luma block, compute the mean of absolute difference (MAD) of its reference pixels. If this value is smaller than a predetermined threshold, select \(M_1 \). Go to step 7.

This result is yielded from the fact that if the similarity of reference pixels of a block is high, the difference between different prediction modes will be very small. For this case, it is not necessary to check all 9 prediction modes, and only one prediction mode is enough [19].
4. If the mean of absolute difference of horizontal references (MADH) is less than a threshold and \(M_1 \) is a member of the set \{mode 0, mode 3, mode 7\}, select \(M_1 \). Go to step 7.
5. Also, if the mean of absolute difference of vertical references (MADV) is less than a threshold and \(M_1 \) is a member the set of \{mode 1, mode 8\}, select \(M_1 \). Go to step 7.

It is obvious that if the similarity of horizontal reference pixels of a block is high, the difference between prediction results obtained with prediction modes 0, 3 and 7 will be very small. Also, if the similarity of
vertical reference pixels of a block is high, the similarity between modes 1 and 8 is high.
6. If all above conditions are unsatisfied, use the improved Pan’s method (explained in Section 3.1).
7. Terminate.

As such, in the worst case only three different 4 × 4 intra-mode costs will be evaluated. Also, for I16MB and 8 × 8 chroma blocks the improved Pan’s method is used.

To increase the speed of the algorithm, we used the early termination of RDO calculations for all proposed algorithms as in (Pan, P. and X., Lin, 2005).

Proposed Fast Inter-prediction Mode Decision Method:
The motivated facts about the inter-prediction are summarized below.
1. The block with high motion activities, instead of high textural details, can be better coded using smaller block sizes, while the block with less motion activities can be more efficiently encoded using larger block sizes.
2. It is observed that in natural image sequences, when the video objects move, the different parts of the video objects move in an almost similar manner. Then, homogenous regions are encoded using 16 × 16 block sizes while non-homogenous regions are encoded using smaller block sizes.
3. Video background is not homogeneous, but because of temporal redundancy, it is coded using 16 × 16 block sizes.

Fast Inter-Prediction Mode Decision using Split and Merge Procedure:
The split procedure partitions the MB into variable block sizes using a quad-tree approach. In this method, a macroblock is divided into equal-size quarters. Then, using the similarities of motion vectors of adjacent blocks we will show how to merge the sub-blocks for quarter divisions. The proposed algorithm is summarized as follows.
1. Subtract the current frame from its previous frame and for any 16 × 16 MB compute

\[
N_i = \text{number of pixels belong to the set MB} \\
N_{im} = \text{number of nonzero pixels in difference MB}
\]

2. If \(N_{im}/N_i\) is smaller than or equal to a predetermined threshold, choose the direct mode as the final macroblock type.
3. Otherwise, split the block into four 8 × 8 blocks and conduct a new iteration of block matching for each of these four descending blocks.
4. If motion vectors of 8 × 8 sub-block are equal or three sub-block MVs are the same and the forth unequal MV only differ by one quarter-pixel distance, choose mode 1(16 × 16) and terminate.
5. If MV0=MV1 and MV2=MV3 (see Figure 9), choose 8 × 16 and terminate.
6. If MV0=MV2 and MV1=MV3, choose 16 × 8 and terminate.
7. Repeat Steps 2 to 4 for each 8 × 8 blocks, except that sub-blocks are 4 × 4.
8. Terminate.

Fig. 9: MB division.

The mode selection methodology employed in this paper is as follows. For I4MB, I16MB, and P the proposed algorithms are used to extract the best mode among the related category and at last RDO is used to extract the final mode.

Analysis and Complexity Reduction of Multiple Reference Frames Motion Estimation:
In H.264/AVC, motion estimation is allowed to search multiple reference frames. Therefore, the required computation is highly increased, and it is in proportion to the number of searched reference frames.

Experimental results show some facts that are used to decide on the number of used references frames (Huang, Y. 2006).
1. For $QP=20$, $QP=30$ and $QP=40$, it can be seen that 65%, 79%, and 95%, of macroblocks need only one reference frame, respectively. Therefore, we should proceed the block matching process from the nearest reference frame to the farthest reference frame.

2. Another interesting point is that low bitrate cases are more likely to have the best reference frames close to the current frame than higher bitrate cases.

3. We can see that for $QP=20$, there are 59.84%, 05.00%, 04.88%, 28.11%, and 02.17% of the macroblocks selected as P16×16, P16×8, P8×16, P8×8, and intra, respectively, when only one previous frame is searched. For $QP=30$, there are 75.97%, 05.36%, 05.45%, 11.04%, and 02.18% of the macroblocks selected as P16×16, P16×8, P8×16, P8×8, and intra, respectively. For $QP=40$, the corresponding percentages are 89.34%, 03.21%, 03.07%, 01.69%, and 02.69%.

4. In H.264/AVC, the SKIP mode is a special case of P16×16. The percentages of SKIP macroblocks after searching one reference frame are 44.57%, 62.69%, and 79.14% for $QP=20$, 30, and 40, respectively. These observations reveal that a large percent of MBs are coded as 16×16 or the SKIP mode and use only one reference frame, while for large QP this fact is amplified. According to these observations, in the following, we have listed the steps for each macroblock to check whether it is necessary to search the next reference frame at the end of each reference frame loop.

1. After the prediction procedure, macroblock residues are transformed, quantized, and entropy coded. If we face the situation for which the transformed and quantized coefficients are very close to zero in the first reference frame, stop the block matching process for the remaining frames.

2. Calculate the sum of absolute transform difference (SATD). If it is less than a threshold (TH_{SATD}), stop the searching process.

3. If the best reference frame is the previous frame and the best motion vector is the same as that of the SKIP mode or 16×16 mode and QP is larger than a threshold (TH_{QP}), the multiple reference frames loop will be early terminated. The determination of TH_{QP} is empirically obtained in (Huang, Y., 2006). In the proposed method 76-96% of computations for searching unnecessary reference frames can be avoided. Also, similar to intra-prediction, we used an early termination technique based on early detection of zero blocks.

Adaptive Search Range Decision Algorithm:

In the reference software JM, the fixed search range window size equal to 16 is used for motion estimation. This full search range is inefficient and increases the computational complexity. Therefore, a two-step adaptive search range decision algorithms is presented. In the first step, we have adopted the length of MV obtained in the first reference frame as the maximum size of the search window for the motion estimation in the second reference frame. And, the length of MV in the second reference frame is selected as the maximum size of the search window (SW) in the third reference frame, and so forth. This step of the proposed algorithm reduces the (SW) size for 4 reference frames, and for the first reference frame a full search is applied. In the second step, an adaptive search range decision method is presented that determines the search window according to the MVs of previous MBs. The primary search window size is selected as the average of MVs of the encoded MBs immediately on left, above, above the left, and above the right of the current MB, computed as

$$SW_{R.x} = \frac{(MVA_x + MVL_x + MVAR_x + MVAL_x)}{4}$$

$$SW_{R.y} = \frac{(MVA_y + MVL_y + MVAR_y + MVAL_y)}{4}$$

where $SW_{R.x}$, MV_{Ax}, $MV_{L.x}$, $MV_{AR.x}$, and $MV_{L.x}$ denote the search window, motion vector above, motion vector left, motion vector above the right, and motion vector above the left, in the x axis, respectively. Similarly y stands for the y-axis. By increasing the search window size around the computed SW, the speed of motion estimation can be improved. The increment of the SW size is stopped when the block matching has not improved with respect to the primary computed SW size.

Region of Interest:

Region of interest video coding provides higher quality in ROI areas, but lower quality in background areas, for a given total bit rate. In ROI coding, regions of greater diagnostic importance to the medical expert are coded with greater quality than the background. In this paper, first the input frames are segmented into the ROI and background using a series of morphological operations. A chain code-based shape coding process
is used to code the ROI’s shape information. After ROI segmentation, we propose a method for achieving high quality within a diagnostically important ROI using finer MBs sizes and minimum quantization parameter (QP=21). Also, non-ROI are compressed using coarse MBs sizes and maximum quantization parameters (QP=51). These steps are explained next.

ROI Segmentation:

In this paper, we present three major contributions for ROI segmentation.

1) A new block-based method that exploits the ROI using contrast difference in the frame. Changes in contrast can be detected by operators that calculate the gradient of a frame. This paper calculates the gradient of a frame by Sobel operator, which creates a binary mask using a user-specified threshold value. We determine a threshold value using the “graythresh” function in Matlab. The binary gradient mask is dilated using the vertical structuring element followed by the horizontal structuring element. The dilated gradient mask completes the outline of the ROI. But there are still holes in the interior of ROI that are filled using the “imfill” function. Two different regions presented in Figure 10 are detected by this method.

![Fig. 10: Contrast segmentation, (a) original image, (b) Edge detection using Sobel operator, (c) Dilation of ROI.](image)

2) Automatic segmentation system based on contrast only targets the correct ROI 70% of time. In this paper, in addition to automatic segmentation, the region of interest can be selected by hand. It is very common for radiologists today, looking at hardcopy diagnostic films, to make quick circles with a grease pencil around the things they find noteworthy in the image. Figure 11 shows ROI that is selected by hand.

3) ROI with high motion activities can be detected using the conventional motion estimation of H.264. Figure 12 shows the ROI detection based on motion activities.

After detection of ROI in a reference frame, the H.264 block matching algorithm based on motion compensation method is used for ROI tracking.

In this paper ROI is defined by a binary mask, which is a binary image that is the same size as the original image with pixels that define the ROI set to 1 and all other pixels set to 0. We can define more than one ROI in an image. The regions can be geographic in nature, such as polygons that encompass contiguous pixels, or they can be defined by a range of intensities. Also we can reposition the mask by dragging it with the mouse. Figure 13 shows a binary mask for ROI.

Once the ROI is segmented in each frame, a hybrid intra- and inter-prediction mode decision method is used for frames coding. To reduce the encoding computational complexity of intra-prediction in H.264, the proposed algorithm selects both I4MB and I16MB prediction for ROI and only I16MB for non-ROI prediction. Also, to achieve fast inter-prediction mode decision, background is predicted by using coarse MBs (16×16 to 4×4) (figure 14).

Experimental Results:

Our proposed algorithm was implemented into JM7.1, provided by JVT according to the test conditions specified in VCEG-N81 document as listed in Table 3. Experiments were carried out on the recommended sequences with various quantization parameters for IPPP… type. For IPPP… experiments, the total number of frames was 300 for each sequence, and the period of I-frame was 100. The used test platform was Pentium IV-2.8 GHz with 256 Mbytes RAM. We compared the performance of our proposed algorithm (fast motion estimation+fast intra+fast inter+selective frame+two step adaptive search range decisions+ROI) with other
Fig. 11: Contrast segmentation. (a) original image and ROI region (selected by hand) (b)-(d) ROI tracking in different frames.

Fig. 12: ROI detection based on motion. (a) Original frame. (b) ROI region with high motion.

available approaches. To show the impact of different parts of the algorithm, these parts were added at different steps and the results were analyzed. Thus, the experiments were ordered in seven states as listed in Table 4.

Comparisons with the case of exhaustive search (RDO) were performed with respect to the change of average PSNR (PSNR), the change of average data bits (Bit), and the change of average encoding time (Time), respectively.
Fig. 13: ROI masking, (a) original image and mask region, (b) Mask image.

Fig. 14: (a)ROI in Original Image , (b) MBs division in ROI and Non-ROI, (c) Reconstructed image in ROI and Non-ROI.

Table 3: Experiment conditions.

<table>
<thead>
<tr>
<th>GOP</th>
<th>IIIII or IPPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codec</td>
<td>JM 7.1</td>
</tr>
<tr>
<td>MV Search Range</td>
<td>+16</td>
</tr>
<tr>
<td>Quantization Parameter</td>
<td>10, 16, 24, 28, 36, 40</td>
</tr>
<tr>
<td>Number of References</td>
<td>5</td>
</tr>
<tr>
<td>Common Coding Option</td>
<td>Hadamard Transform, CABAC, RDO is enabled</td>
</tr>
<tr>
<td>Format</td>
<td>CIF and QCIF</td>
</tr>
<tr>
<td>Number of Frames</td>
<td>300</td>
</tr>
</tbody>
</table>

Table 4: Different methods used in our experiments.

<table>
<thead>
<tr>
<th>Category</th>
<th>Intra-Prediction</th>
<th>Inter-Prediction</th>
<th>Multi- Reference Algorithm</th>
<th>Early Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDO</td>
<td>RDO</td>
<td>RDO</td>
<td>RDO</td>
<td>YES</td>
</tr>
<tr>
<td>M1</td>
<td>Pan’s Method</td>
<td>RDO</td>
<td>RDO</td>
<td>YES</td>
</tr>
<tr>
<td>M2</td>
<td>Improved Pan’s Method (3.1)</td>
<td>RDO</td>
<td>RDO</td>
<td>YES</td>
</tr>
<tr>
<td>M3</td>
<td>Proposed Alg.(3.2)</td>
<td>RDO</td>
<td>RDO</td>
<td>YES</td>
</tr>
<tr>
<td>M4</td>
<td>Proposed Alg.(3.2)</td>
<td>Proposed Alg.(split/merge)(4.1)</td>
<td>RDO</td>
<td>YES</td>
</tr>
<tr>
<td>M5</td>
<td>Proposed Alg.(3.2)</td>
<td>Proposed Alg.(split/merge)(4.1)</td>
<td>Proposed Alg.(4.2)</td>
<td>YES</td>
</tr>
<tr>
<td>M6</td>
<td>Proposed Alg.(3.2)</td>
<td>Proposed Alg.(2-step Adaptive search range) (4.3)</td>
<td>Proposed Alg.(4.2)</td>
<td>Yes</td>
</tr>
<tr>
<td>M7</td>
<td>Proposed Alg.ROI (5.2)</td>
<td>Proposed Alg.ROI (5.2)</td>
<td>Proposed Alg.(4.2)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The PSNR is derived from (in decibel)

\[
PSNR = 10 \log_{10} \left(\frac{255^2}{MSE} \right) \text{ (dB)}
\]

Therefore, in the rest of this paper we used the overall PSNR value of all three components Y, U, and V using be defined as

\[
\Delta \text{Time} \% = \frac{T_{prop} - T_{ref}}{T_{ref}} \times 100
\]

and, the bitrate increase is defined as

\[
\Delta \text{Bitrate} \% = \frac{bitrate_{prop} - bitrate_{ref}}{bitrate_{ref}} \times 100
\]
A group of experiments were carried out on different sequences. The encoding bitrates, the PSNR values, and the time saving factor (as compared with the H.264 RDO method) for three test sequences with different quantization parameters are listed in Table 5. Generally speaking, as can be seen from these tables, we have saved 40-50% of the total encoding time with 0.1-1.5% rate decrease in average, at the expense of only 0.015 dB distortion in average for non-ROI.

Table 5: Experimental results for IPPP type sequences, distortion comparison, Bitrate and computational complexity.

<table>
<thead>
<tr>
<th>Video</th>
<th>method</th>
<th>PSNR</th>
<th>Bit</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranna</td>
<td>M1</td>
<td>-0.079</td>
<td>1.540</td>
<td>-35.42</td>
</tr>
<tr>
<td></td>
<td>M2</td>
<td>-0.2</td>
<td>1.004</td>
<td>-37.34</td>
</tr>
<tr>
<td></td>
<td>M3</td>
<td>-0.081</td>
<td>1.210</td>
<td>-39.25</td>
</tr>
<tr>
<td></td>
<td>M4</td>
<td>-0.27</td>
<td>0.890</td>
<td>-41.32</td>
</tr>
<tr>
<td></td>
<td>M5</td>
<td>-0.01</td>
<td>0.735</td>
<td>-42.23</td>
</tr>
<tr>
<td></td>
<td>M6</td>
<td>-0.080</td>
<td>1.789</td>
<td>-37.22</td>
</tr>
<tr>
<td></td>
<td>M7</td>
<td>-0.015</td>
<td>0.12</td>
<td>-40.0</td>
</tr>
<tr>
<td>Rahsa</td>
<td>M1</td>
<td>-0.071</td>
<td>1.001</td>
<td>-38.24</td>
</tr>
<tr>
<td></td>
<td>M2</td>
<td>-0.023</td>
<td>0.940</td>
<td>-39.25</td>
</tr>
<tr>
<td></td>
<td>M3</td>
<td>-0.060</td>
<td>0.932</td>
<td>-41.50</td>
</tr>
<tr>
<td></td>
<td>M4</td>
<td>-0.01</td>
<td>0.942</td>
<td>-42.02</td>
</tr>
<tr>
<td></td>
<td>M5</td>
<td>-0.13</td>
<td>0.954</td>
<td>-40.34</td>
</tr>
<tr>
<td></td>
<td>M6</td>
<td>-0.061</td>
<td>0.941</td>
<td>-39.34</td>
</tr>
<tr>
<td></td>
<td>M7</td>
<td>-0.014</td>
<td>0.27</td>
<td>-38.02</td>
</tr>
<tr>
<td>Rals</td>
<td>M1</td>
<td>-0.083</td>
<td>1.902</td>
<td>-35.26</td>
</tr>
<tr>
<td></td>
<td>M2</td>
<td>-0.17</td>
<td>0.897</td>
<td>-34.25</td>
</tr>
<tr>
<td></td>
<td>M3</td>
<td>-0.065</td>
<td>0.982</td>
<td>-34.25</td>
</tr>
<tr>
<td></td>
<td>M4</td>
<td>-0.21</td>
<td>0.941</td>
<td>-39.50</td>
</tr>
<tr>
<td></td>
<td>M5</td>
<td>-0.204</td>
<td>0.980</td>
<td>-40.45</td>
</tr>
<tr>
<td></td>
<td>M6</td>
<td>-0.012</td>
<td>1.001</td>
<td>-43.47</td>
</tr>
<tr>
<td></td>
<td>M7</td>
<td>-0.014</td>
<td>0.941</td>
<td>-38.1</td>
</tr>
</tbody>
</table>

Conclusion:

In this paper, an adaptive intra- and inter-prediction mode decision algorithm for H.264/AVC standard was integrated using a hybrid scheme that is appropriate for efficient and accurate compression of medical videos. The model uses lossless compression in the region of interest, and very high rate, lossy compression in other regions. In the proposed algorithm, we decreased the encoding time by reducing the number of candidate modes in non-ROI.

In order to evaluate the impact of different parts of the proposed algorithm, they were added step by step and the related experimental results were given. The experimental results showed that the proposed algorithm has reduced the number of RDO calculations and has improved the compression ratio with respect to previous algorithms. As the experimental results show, the proposed algorithm can be used for challenging work of intra- and inter-prediction mode decision in the H.264/AVC for medical video encoders with low computational cost.

REFERENCES

