Alteration Mapping for Exploration of Porphyry Copper Mineralization in the Sarduiyeh Area, Kerman Province, Iran, Using ASTER SWIR Data

1Mohammad Khaleghi, 2Hojjatollah Ranjbar

1Department of Geology, Shahid Bahonar University of Kerman, Iran
2Department of Mining Engineering, Shahid Bahonar University of Kerman, Iran

Abstract: The ASTER Shortwave Infra-Red (SWIR) bands, enabled the generation of maps designed to represent the abundance of broad minerals such as kaolinite, muscovite and chlorite which are important in the identification of hydrothermal alterations related to porphyry copper mineralization. SWIR bands from Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) with the wavelength between 1.65 and 2.43 µm have a good potential for mapping hydrothermal alteration. In this paper which aims at creating a pixel purity index (PPI), we pre-processed the images with Internal Average Relative Reflectance (IARR)) and used minimum noise fraction (MNF) transformation. PPI was used to extract the most spectrally pure pixels from multispectral images. The study area is located in the south of Kerman city, in southern Iran. Spectral analyses of the hydrothermal alteration minerals of the study area were obtained by matching the unknown spectra of the purest pixel to the U.S Geological Survey (USGS) mineral library. Matched filtering (MF) was used to enhance the hydrothermal alteration minerals of the study area including kaolinite-dickite, muscovite-sericite-illite, and chlorite-epidote by using the spectra which obtained from PPI. We have also used directed principal component analysis (DPCA) for enhancing hydrothermal alteration. Propylitic and phyllic-argillic zones could be separated which are important for porphyry copper exploration.

Key words: ASTER SWIR, Exploration, porphyry copper, Principal Components, PPI, MF

INTRODUCTION

The advanced space-borne Thermal Emission and Reflection Radiometer (ASTER) (Fujisada, 1995; Iwasaki et al., 2002) instrument is included on the Earth Observing System (EOS) TERRA platform, and records radiation from the Earth in 14 spectral bands (Table 1). This instrument, providing enhanced capabilities for geological mapping and mineral exploration. The ASTER sensor acquires multi-spectral images. It was loaded onto an EOS terra platform and launched on December 18, 1999 (Rowan and Mars, 2003). ASTER measures reflected radiation in three bands between 0.52 and 0.86 µm (visible and near-infrared (VNIR) region) and in six bands from 1.6 to 2.43 µm (shortwave infrared (SWIR) region), with 15- and 30-m spatial resolution, respectively. In addition emitted radiations are measured at 90-m resolution in five bands in the 8.125-11.65 µm wavelength regions (TIR).

Many of the known porphyry Cu deposits are situated in the Central Iranian Volcanic Belt. This belt has a great potential as far as Tertiary porphyry copper mineralization is concerned. Given the poor soil development, relatively poor vegetation cover but abundant outcrops the arid/semi-arid part of the belt is suitable for remote sensing studies. Hydrothermally altered rocks have received considerable attention because of their potential economic implications and favorable spectral characteristics for remote identification (Rowan et al., 2003; Abrams et al., 1977, 1983; Goetz et al., 1983; Podwysocki et al., 1983; Kruse et al., 1993; Crosta et al., 2003; Galvao et al., 2005).

Phyllic, argillic and potassic zones are associated with hydrothermal alterations in porphyry type deposits. An oxide zone is developing over many of the porphyry bodies, which are rich in iron oxide minerals (Azizi et al., 2010). Landsat data has been used for a number of years in arid and semi-arid environments to locate areas of iron oxides and/or hydrous minerals (Abrams et al., 1983; Kaufman, 1988 and Tangestani and Moore, 2001) which may be associated with hydrothermal alteration zones. Host rocks that contain ore deposits of hydrothermal origin always show the results of the interaction with the hydrothermal fluids that changed the mineral and chemical composition of the rock and caused the deposition of the ore and related hydrothermal

The aim of this paper is to enhance the minerals of argillic, phyllic and propylitic alterations related to the copper porphyry deposit of the study area using the spectra obtained by PPI method through matched filtering (MF) and directed principal component analysis.

Table 1: Wavelength ranges and spectral resolution of ASTER bands (Abrams, 2000).

<table>
<thead>
<tr>
<th>Spectral bandwidth (µm)</th>
<th>VNIR</th>
<th>SWIR</th>
<th>TIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1 0.52-0.60</td>
<td></td>
<td>1.650-1.700</td>
<td></td>
</tr>
<tr>
<td>Band 2 0.63-0.69</td>
<td></td>
<td>2.145-2.185</td>
<td></td>
</tr>
<tr>
<td>Band 3 N 0.78-0.86</td>
<td></td>
<td>2.185-2.225</td>
<td></td>
</tr>
<tr>
<td>Band 3B 0.78-0.86</td>
<td></td>
<td>2.235-2.285</td>
<td></td>
</tr>
<tr>
<td>(backward looking)</td>
<td></td>
<td>2.295-2.395</td>
<td></td>
</tr>
<tr>
<td>Band 4 1.650-1.700</td>
<td></td>
<td>8.125-8.475</td>
<td></td>
</tr>
<tr>
<td>Band 5 2.145-2.185</td>
<td></td>
<td>8.475-8.825</td>
<td></td>
</tr>
<tr>
<td>Band 6 2.185-2.225</td>
<td></td>
<td>8.925-9.275</td>
<td></td>
</tr>
<tr>
<td>Band 7 2.235-2.285</td>
<td></td>
<td>10.25-10.95</td>
<td></td>
</tr>
<tr>
<td>Band 8 2.295-2.395</td>
<td></td>
<td>10.95-11.65</td>
<td></td>
</tr>
<tr>
<td>Band 9 2.360-2.430</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Spatial resolution (m) | 15 | 30 | 90 |

Geological Setting:

The study area (E57°00'-57°30' and N29°00'-29°15') is located in the southern part of Central Iranian Volcano- Sedimentary complex (Urumiyeh-Dokhtar belt), south-southeast of Kerman province (Fig. 1). The mentioned area is located in the southern part of Dehej-sarduiyeh volcanic belt (Fig. 2).

This area is recognized by its Eocene volcano-sedimentary complex which is one of the most astonishing geological formations in Kerman province (shahabpour, 1994). This belt is also a massive source of copper in the area.

The most impressive geological feature in study area is the Eocene sequences, consisting of andesite, andesite-basalt, basalt, rhyolite, trachyte, trachyandesite, trachybasalt and pyroclastics. The oldest geological unit in the area is the colored mélange unit which has an upper Cretaceous age. Argillization, sericitization, propylitization and silicification are the most common types of hydrothermal alterations in the area (Geological Survey of Iran 1973). Copper occurrence are numerous, some of them being exploited in the ancient times. There are several ore indications and mineralization such as Hosseyn Abad, Qanat Darreh, Dolat abad, Zamin Hossein, and Sarduiyeh-Hanzakoyeh in the study area, which is why aforementioned area was chosen for remote sensing studies.
Fig. 2: Geological setting: Dehej-Sarduiyeh Belt (Geological Survey of Iran 1973).

Data Processing:

Many image analysis and processing techniques can be used to interpret the remote sensing spectral data. Band ratio, Principal component analysis (PCA), Minimum noise fraction (MNF), spectral angle mapper (SAM) and Linear Spectral Unmixing (LSU) are important techniques that are used for finding alteration zones. In this research, we used several methods including DOCA, MNF, PPI, and MF for the discrimination of alteration zones.

Directed Principal Component Analysis:

Principal component analysis (PCA) determines the eigenvectors of a variance-covariance or a correlation matrix. The resulting components are often more interpretable than the original images. PCA is widely used for alteration mapping in metallogenic provinces (e.g., Crosta and Moore, Tanagestani and Moore, 2001; Crosta et al., 2003). PCA can be applied to multivariate datasets, such as multispectral remote sensing images, with the purpose of highlighting spectral responses related to specific hydrothermal alteration minerals (Crosta et al., 2003). In the directed PCA analysis only certain bands are chosen that contain absorption and reflection features of the minerals under investigation. If the number of input channels is reduced to avoid a particular spectral contrast, the chances of defining a unique principal component for a specific mineral class will be increased (Ruiz-Armenta and Prol-Ledesma, 1998).

Directed PCA technique has been applied in this study. An approach based on the examination of eigenvector loadings in each PC image is used for determining which image contains information related to the spectral signatures of specific target minerals. It is expected that the PC image that collects moderate to high eigenvector loadings for the diagnostic absorptive and reflective bands of the index mineral could be considered as the specific image for that mineral. If the loading of absorptive band is negative in sign, the target area will be enhanced in bright pixels, and if the loading of reflective band is negative, the area will be enhanced in dark pixels (Crosta and Moore, 1989).

Table 2 shows the eigenvector loadings for bands 4, 6 and 7. As phyllic alteration has an absorption in band 6, and reflections in bands 4 and 7, PC3 can show the areas with phyllic alteration (Fig. 3). Table 3 shows the eigenvector loadings for bands 4, 5 and 7. As argillic alteration has an absorption in band 5, and reflections in bands 4 and 7, PC3 can show the areas with argillic alteration (Fig. 4). Comparison of figures 3 and 4 shows that the areas of phyllic and argillic alterations are almost overlapping. Table 4 shows the eigenvector loadings for bands 7, 8 and 9. As propylitic alteration has an absorption in band 8, and reflections in bands 7 and 9, PC3 can show the areas with propylitic alteration. The inverse of this PC is used for enhancing propylitic areas with white pixels (Fig. 5).
Fig. 3: The phyllic image that is prepared based on the eigenvector loadings (PC3) of table 2.

Table 2: The result of DPCA for enhancing phyllic zone.

<table>
<thead>
<tr>
<th></th>
<th>Pc1</th>
<th>Pc2</th>
<th>Pc3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 4</td>
<td>0.62</td>
<td>0.78</td>
<td>0.02</td>
</tr>
<tr>
<td>Band 6</td>
<td>0.54</td>
<td>-0.41</td>
<td>-0.72</td>
</tr>
<tr>
<td>Band 7</td>
<td>0.55</td>
<td>-0.46</td>
<td>0.68</td>
</tr>
<tr>
<td>Eigen value</td>
<td>0.107282</td>
<td>0.001374</td>
<td>0.000402</td>
</tr>
</tbody>
</table>

Fig. 4. The argillic image that is prepared based on the eigenvector loadings (PC3) of table 3.
Table 3: The result of DPCA for enhancing argillic zone.

<table>
<thead>
<tr>
<th></th>
<th>Pc1</th>
<th>Pc2</th>
<th>Pc3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 4</td>
<td>0.63</td>
<td>0.77</td>
<td>0.05</td>
</tr>
<tr>
<td>Band 5</td>
<td>0.53</td>
<td>-0.37</td>
<td>-0.75</td>
</tr>
<tr>
<td>Band 7</td>
<td>0.56</td>
<td>-0.5</td>
<td>0.64</td>
</tr>
<tr>
<td>Eigen value</td>
<td>0.107282</td>
<td>0.001374</td>
<td>0.000402</td>
</tr>
</tbody>
</table>

Fig. 5: The propylitic image that is prepared based on the eigenvector loadings (PC3) of table 4.

Table 4: The result of DPCA for enhancing propylitic zone.

<table>
<thead>
<tr>
<th></th>
<th>Pc1</th>
<th>Pc2</th>
<th>Pc3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 7</td>
<td>0.58</td>
<td>0.43</td>
<td>-0.63</td>
</tr>
<tr>
<td>Band 8</td>
<td>0.60</td>
<td>0.33</td>
<td>0.72</td>
</tr>
<tr>
<td>Band 9</td>
<td>0.54</td>
<td>-0.83</td>
<td>-0.62</td>
</tr>
<tr>
<td>Eigen value</td>
<td>0.098944</td>
<td>0.000493</td>
<td>0.000320</td>
</tr>
</tbody>
</table>

Minimum Noise Fraction (MNF) Method:
MNF analysis identifies the location of spectral signature anomalies. This process is of interest to the mineral exploration communities because spectral anomalies are often indicative of alterations. MNF transform is used to determine the inherent dimensionality of image data to segregate noise in the data and to reduce the computational requirements for subsequent processing (Boardman and kruse, 1994). This method is similar to principal component (PC) analyses that have been used for a long time in multispectral image processing but involves an extra preceding step. MNF is used as a preparatory transformation to condense most of the essential components into a few spectral bands. The first MNF bands contain signal and the remaining bands contain noise (Altinbas et al., 2004).

Pixel Purity Index (PPI) and Extracted End-member Spectra:
The PPI function which stands for the pixel purity index is used to automatically locate the pixels with the highest level of spectral purity in higher order MNF eigen-images which are multispectral and hyperspectral data (Boardman, 1993). N-Dimensional scatter plots are repeatedly projected onto a random unit vector in order to calculate the pixel purity index. The most spectrally pure or extreme pixel corresponds to materials with spectra that create the spectra through linear combination. A pixel purity image, in which the digital number (DN) of each pixel corresponds to the number of times that pixel was recorded as extreme, is created after the total number of times each pixel is marked as is every projection is noted.

As mentioned earlier the PPI function is performed using MNF images. The threshold factor of 2.5 was used with 10000 iterations in order to locate the purest pixels. High-DN pixels or pure pixels were determined through the use of density slice thresholds. These values were applied to compute the region of interest (ROI),
being used for n-dimensional visualization. The purest pixels are located, identified and clustered using n-dimensional visualization in conjunction with the MNF and PPI results.

The most extreme spectral responses are also found using the same method in data set. In this study, pure pixels were extracted by performing the n-dimensional visualization on the MNF images. After finding the pure pixels, their spectra were determined, and six types of classes were extracted.

In order to derive these spectra from the Internal Average Relative Reflection (IARR) images, spatial locations of the pixels were taken from MNF image through the inversion of the MNF plots to the spectra. Further processing was performed by using the extracted spectra as references.

Matching Class Spectra to Library Spectra and Mapping Classes:

The USGS mineral library was used to perform the matching process. Spectral analysis was used to create a score between 0 and 1, where the value of 1 demonstrates a perfect match, and to identify mineral types. It is well known that certain minerals are similar in a particular wavelength ranges. To obtain the best possible results, a wavelength range that contains diagnostic absorption features was used to distinguish among the minerals (Fig 6). Table 5 indicates the ranked score or weighted score for each of the classes in the input spectral library which are obtained through spectral analysis. The highest score represent the closest match and a higher confidence in the degree of spectral similarity. The spectra so obtained were used in MF for alteration mapping.

<table>
<thead>
<tr>
<th>Spectral class</th>
<th>Mineral type</th>
<th>Score between 0 and 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class#1</td>
<td>Illite</td>
<td>0.966</td>
</tr>
<tr>
<td>Class#2</td>
<td>Muscovite</td>
<td>0.998</td>
</tr>
<tr>
<td>Class#3</td>
<td>Kaolinite</td>
<td>0.943</td>
</tr>
<tr>
<td>Class#4</td>
<td>Dickite</td>
<td>0.952</td>
</tr>
<tr>
<td>Class#5</td>
<td>Epidote</td>
<td>0.966</td>
</tr>
<tr>
<td>Class#6</td>
<td>Chlorite</td>
<td>0.900</td>
</tr>
</tbody>
</table>

Fig. 6: Matching class spectra to USGS mineral spectral library.
Matched Filtering (MF):

Matched filtering performs partial unmixing. This technique only finds the user defined endmember because not all the endmembers need to be known. This method maximizes the known endmember's response and suppresses the response of the unknown composite background. It does not require knowledge of all endmember within an image and detected alteration minerals including kaolinite, muscovite and epidote-chlorite based on matches to extracted endmember spectra which are obtained through PPI that scored by spectral analysis (Fig. 7). In all the images the sedimentary rocks and vegetation cover are masked.

Fig. 7: Haydrothermal alterations are enhanced using MF; (a) Phyllic, (b) Propylitic, (C) Argillic.

Discussion and Conclusion:

In order to check the accuracy of results, the altered areas and the reported mineralized areas were visited for ground control and sampling. The procedure at each station included field observations, GPS readings, collection of samples for chemical analysis, petrography and XRD analysis and taking field photographs.

Hydrothermal alterations related to porphyry copper deposits and mineralization in the studied area such as Zamin Hosseyn, Qanat Darreh and Hanza kuieh were mapped Using the SWIR ASTER data and image processing methods such as PPI, MF and DPCA. PPI technique used for obtaining the pure pixels and...
extracting the endmember spectra with the best matching to USGS spectral library, which was performed with
the use of spectral analysis scoring system. The extracted spectra so obtained were used in the MF method
and hydrothermal alteration such as Phyllic, propylitic and argillic were enhanced. There is a good
 correspondence between the copper mineralization and the argillic-phyllic altered areas mapped by MF and
DPCA methods.

Comparison of the DPCA and MF results with the results obtained from ground samples shows that both
methods could enhance the altered areas. Although MF gave a better result. The argillic zone due to its
spectral similarities with the phyllic zone in terms of absorptions and reflection bands is difficult to enhance
well by ASTER data. The similarities between the phyllic and argillic images obtained by MF and DPCA can
be attributed to the surface weathering and formation of clay minerals over the phyllic altered zones.

REFERENCES

products for the high spatial resolution imager on NASA Terra Platform. International Journal Of Remote
Sensing, 21: 847-859.

aerial scanner images for the spectral region 0.46 to 2.34 mm. Economic Geology, 98: 1019-1027.

591-604.

Altiubas, U., et al., 2004. Using advanced spectral analysis techniques as possible means of identifying

Azizi, H., et al., 2010. Extraction of hydrothermal alteration from ASTER SWIR data from east Zanjan,

data, Northern Grapevine Mountains, Nevada: In Proceeding Tenth Thematic Conference. Geological Remote

mapping in SW Minas Gerais State, Brazil: a prospecting case history in Greenstone Belt Terrain. In
Proceedings of the Seventh Thematic Conference on Remote Sensing for Exploration Geology, 2-6 October,
Calgary, Canada, Environmental Research Institute of Michigan, pp: 1173-1187.

Crosta, A.P., et al., 2003. Alteration minerals in epithermal deposits in Patagonia, Argentina, Using ASTER

for Optical Engineering, 16-25.

Galvao, L.S., et al., 2005. Use of ASTER short-wave infrared bands for the spectral discrimination of

Iran publication, Tehran. Report No. 53.

Geology, 78: 573-590.

Hosseinjani, M. and M.H. Tangestani, 2011. Mapping alteration minerals using sub-pixel unmixing of

Kruse, F.A., et al., 1993. The spectral image processing System (SIPS) – interactive visualization and

for Optical Engineering, 42-50.

Podwysocki, M.H., et al., 1983.Use of multispectral images for assessment of hydrothermal alteration in
the Marysville, Utah, mining area. Economic Geology, 78: 675-678.

