Yield and its Components of Maize/Soybean Intercropping Systems as Affected by Planting Time and Distribution

Abdel Aziz, M. Abou-Elela, Usama, A. Abd El-Razek and Khalil, H.E.

1Crops Intensification Department, Agricultural Research Center, Giza, Egypt.
2Dept. of Agronomy, Agricultural Faculty, Tanta University, Egypt.

Abstract: Two field experiments were carried out at El-Gemmeiza Agriculture Experiments and Research Station, ARC, El- Gharbia Governorate, Egypt during 2008 and 2009 seasons. The objectives were to study the effect of three cropping systems soybean/maize, three time of soybean planting and two distribution of maize plants on yield and its components for both crops. A split-split plot design with three replications was used in RCBD. Data analysis indicated that, all studied traits recorded significant effects due to the interactions between cropping systems and Time of planting and distribution maize plants in both seasons. The highest ear leaf area and 100-grain weight were found with treatment cropping system (2:4) x soybean planted 21 days after maize and second distribution of maize planting in both seasons. While, grain yield /fed. was different from season to anther, but treatment cropping system (2:2) x Soybean planted 21 days before maize and the first distribution of maize planting recorded the highest values of grain yield/fed. in the first season, and the same cropping system in the second season with both distribution maize plants and soybean planted 21 days after maize. The highest seed yield/fed. was found with the interactions between cropping system (2:4) and the second distribution of maize planting and both time of planting soybean planted with maize and soybean planted 21 days after maize in first and second season, respectively. The highest values of LER recorded with intercropping systems (2:2) and (2:4) in both seasons.

Key words: intercropping, distribution plants, soybean, land equivalent ratio, Competitive ratio.

INTRODUCTION

Soybean [Glycine max (L.) Mrrill] could be considered as the most important protein and oil crops in the world. It has been commercially grown in Egypt since early 1970s and gained local interest since that time. The cultivated form is used as a human food and livestock feeds.

Maize (Zea mays L.), which is one of the most important cereal crops grown in Africa and ranks as the third most cultivated crop in Egypt (Ayeni, 1987), features prominently in inter-cropping systems involving legume and non-legume crops such as soybean, cowpea, cassava, etc. Maize is used for human food, livestock feed and as a source of industrial raw material for the production of oil, alcohol and starch.

The growth of two crops together in the same field during a growing season may result in inter specific competition or facilitation between the plants (Zhang and Li, 2003). Thus, the overall mixture densities and the relative proportions of component crops are important in determining yields and production efficiency of cereal-legume intercrop systems (Willey and Osiru, 1972; Lakhani, 1976).

Intercropping, in Egypt, is also recommended to increase profitability for Egyptian farmers and agricultural production against food crises in Egypt (Metwally, 1999; Metwally et al., 2003; Metwally et al., 2005). The intercropping may lead to an overall yield advantage (Sayed Galal et al., 1979; Ahmed and Rao, 1982; Sayed Galal, 1984; Assey et al., 1992; Shafik, 2000; Metwally, 1999 and Shafik and Soliman, 1999).

Abd El-Gawad et al., (1985) and Hammad (1998) found that, grain yield, weight of 100-grain and land equivalent ratio increased when soybean intercropped with maize.

In maize/soybean intercropping, the yields of the cereals were not affected by intercropping with soybean when arranged in either single or double alternate rows (Mohla and De, 1980).

Sowing date is one of the most important agronomic factors affecting soybean. In Egypt, Several investigators reported that, sowing date plays an important role in crop productivity. Seed yield of soybean cultivars decreased with delayed sowing. They also found that, higher yields were associated with more pods and higher seed weight/plant as well as higher weight of 100 seeds (Johanson et al., 1960; Beaver and Johnson, 1981; Board and Hall, 1984; Sarmah et al., 1984; Boquet et al., 1985; Moore et al., 1991; Ali, 1993; Shafshak et al., 1997; Mohamed, 1994; Hassan et al., 2002 and Soliman et al., 2007).

The objective of this investigation was to study intercropping systems of maize with soybean planting time of soybean and maize plant distribution on yield and its components as well as Land equivalent ratio in both seasons.
MATERIAL AND METHODS

The present investigation was carried out at El-Gemmeiza Agriculture Experiments and Research Station, ARC, Gharbia Governorate, Egypt during the two successive growing summer seasons 2008 and 2009 to study the effect of intercropping systems, planting time for soybean and distributions of maize plants on the productivity of maize [Tetra Cross (T.C. 310)] and soybean [Giza 111].

The experiments were laid out split-split plots with three replications, three Cropping Systems (CS) were randomly allocated in the main plots:

(CS1) = one row maize : 2 rows soybean.
(CS2) = two rows of maize : two rows of soybean.
(CS3) = two rows of maize : four rows of soybean.

The sub-plots were randomly assigned by three Time of planting for soybean (T):

(T1) = Soybean planted 21 days before maize.
(T2) = Soybean planted with maize.
(T3) = Soybean planted 21 days after maize.

Sub-sub plots were randomly assigned by the two distributions of maize plants (D):

(D1) = One plant/hill, 20 cm apart.
(D2) = Two plants/hill, 40 cm apart.

All the previous patterns resulted in 30000 maize plants. Each sub-plot included of 12 ridges, each ridge was 3 m long and 0.7 m wide (25.2 m²). The proceeding crop was wheat in the two seasons. Soybean was planted at 15 and 20 May on 2008 and 2009 seasons, respectively. Maize was thinned to 1 plant/hill in intercropping patterns with distance of 20 cm between hills and 2 plants/hill with distance 40 cm between hills, Soybean was thinned to 2 plants/hill with distance of 20 cm between hills. All another cultural practices for maize production were undertaken as recommended.

At harvest time a random sample of ten plants from each sub-sub-plot were taken in both seasons to determine the following characters:

A-Maize yield and its components
1- Plant height (cm)
2- Ear leaf area (cm).
3- 100- grain weight (g).
4- Grain yield/ear (g).
5- Grain yield/fed. (aradab).

B- Soybean yield and its components
1- Plant height (cm).
2- No.of pods/plant.
3- 100-seed weight (g).
4- Seed yield/plant (g)
5- Seed yield/fed (kg)

Land Equivalent Ratio (LER): the ratio of area need under sole cropping to that of intercropping at the same management level to produce an equivalent yield, accordeing to Mead and Willey (1980). It is Calculated as follows:

\[\text{LER} = \frac{(Y_{ab}/Y_{aa}) + (Y_{ba}/Y_{bb})}{1} \]

Where, \(Y_{aa} \) and \(Y_{bb} \) are the sole crop yields of crops a and b, respectively, \(Y_{ab} \) is the intercrop yield of crop a, and \(Y_{ba} \) is the intercrop yield of crop b.

Competitive ratio (CR) indicates the number of times by which one component crop is more competitive than the other. Relative species competition is often evaluated using competitive ratios (Putnam et al., 1984). This was calculated as:

\[\text{CR} = \frac{La/Lb}{zba/zab} \]

Where CR is the competitive ratio of crop a and La and Lb are the LERs of crops a and b respectively, zba is the proportion of crop a in the ab intercrop and zab is the proportion of crop b in the ab intercrop. If \(Ra < 1 \), there is a positive benefit and the crop can be grown in association; if \(Ra > 1 \), there a negative benefit. The reverse is true for Rb.

Data statistically analyzed as the technique analysis of variance (ANOVA) of split-split plot design as mentioned by Gomez and Gomez (1984). Treatment means were compared using the Least Significant Difference (LSD at 5%) test as outlined by Waller and Duncan (1969).

RESULTS AND DISCUSSION

1-Maize Yield and its Components:

Data presented in Table (1) showed that, the intercropping systems had significant effects on yield and other traits in both seasons, except plant height in the first season. Similar results were found by Metwally et al., (2005) recorded that, there were significant increases in the grain yield/plant for intercropped maize in alternating ridges than mixed intercropping and solid plantings. Also with Metwally, et al., (2009 a) who reported that, cropping patterns significantly affected all traits of maize and soybean. Results in Table (1) showed that, cropping system 2 maize : 2 soybean (CS3) had significant increments in each plant height and grain yield/fed. in both seasons, while cropping system 2 maize: 4 soybean (CS1) recorded the highest
significant values for ear leaf area, 100-grain weight, and yield/ear in both seasons. Similar results were found by Metwally, et al., (2009 a) who found significant differences between the two intercropping patterns (2:2 and 2:4) for total leaf area/plant, grain yield per plant and feddan. Sole maize recorded the higher grain yield/fed. (17.28 and 18.44), compared with intercropped mean (11.58 and 12.55) in both seasons, respectively.

Soybean planted 21 days after maize (T3) recorded the highest values of plant height, ear leaf area, 100-grain weight, and grain yield/ear. in both seasons. Similar results were obtained that, increasing distance between hills of maize plant (D) significantly increased values of ear leaf area, 100-grain weight, and grain yield/ear and grain yield/fed. in both seasons as shown as in Table (1). On the other hand, the highest grain yield/fed. found with treatment CS2 x T3 and D2 in the first season, but in the second season there was no significant difference between treatments.

Table 1: Effect of intercropping systems, time of soybean planting, distribution maize plants and their interaction on maize yield and its components.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Plant height (cm)</th>
<th>Ear leaf area (cm²)</th>
<th>100-grain weight (g)</th>
<th>Grain yield (kg/ha)</th>
<th>Grain yield (kg/fed.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1 T1</td>
<td>317.33</td>
<td>321.00</td>
<td>319.17</td>
<td>879.33</td>
<td>883.33</td>
</tr>
<tr>
<td>CS1 T2</td>
<td>329.80</td>
<td>330.00</td>
<td>328.14</td>
<td>905.63</td>
<td>903.63</td>
</tr>
<tr>
<td>CS2 T1</td>
<td>322.00</td>
<td>333.50</td>
<td>323.33</td>
<td>928.75</td>
<td>920.50</td>
</tr>
<tr>
<td>CS2 T2</td>
<td>330.00</td>
<td>333.50</td>
<td>329.50</td>
<td>958.00</td>
<td>952.50</td>
</tr>
<tr>
<td>CS3 T1</td>
<td>329.00</td>
<td>338.00</td>
<td>329.50</td>
<td>800.33</td>
<td>796.83</td>
</tr>
<tr>
<td>CS3 T2</td>
<td>329.00</td>
<td>338.00</td>
<td>329.50</td>
<td>800.33</td>
<td>796.83</td>
</tr>
<tr>
<td>T3 D1</td>
<td>329.00</td>
<td>338.00</td>
<td>329.50</td>
<td>800.33</td>
<td>796.83</td>
</tr>
<tr>
<td>T3 D2</td>
<td>329.00</td>
<td>338.00</td>
<td>329.50</td>
<td>800.33</td>
<td>796.83</td>
</tr>
</tbody>
</table>

LSD0.05

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SC NS T 1</td>
<td>174</td>
<td>190</td>
<td>171</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>SC NS T 2</td>
<td>174</td>
<td>190</td>
<td>171</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>SC NS T 3</td>
<td>174</td>
<td>190</td>
<td>171</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>SC x T NS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>174</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>SC x T D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>174</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>SC x T X D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>174</td>
<td>190</td>
<td></td>
</tr>
</tbody>
</table>

Significant Results

Soybean planted 21 days after maize (T3) recorded the highest values of plant height, ear leaf area, 100 grain weight, grain yield/ear and grain yield/fed. in both seasons as shown in Table (1).

Also, in the same Table obtained that, increasing distance between hills of maize plant (D) significantly increased values of ear leaf area, 100-grain weight, and grain yield/ear and grain yield/fed. in both seasons as shown in Table (1). On the other hand, the highest grain yield/fed. found with treatment CS2 x T3 and T1 in the first and second seasons, respectively.

The interaction between CS x T shown as in Table (1) was significant for all studied traits. Treatment CS2 x T3 recorded the highest values for ear leaf area and grain yield/ear. in both seasons, while the highest grain yield/fed. were differed from season to another, this mean that there was no clear trend in this aspect as results of Table (1). On the other hand, the highest grain yield/fed. found with treatment CS2 x T1 and T3 in the first and second seasons, respectively.

It was quite apparent from the data illustrated in Table (1) that, the interaction between cropping systems (CS) and distribution maize plants (D) had significant effects on yield and other traits in both seasons, except plant height in the first season. From the same table, it could be noticed that, treatment T3 x D2 recorded the highest ear leaf area, 100-grain weight and grain yield/ear in both seasons. These results are in agreements with those obtained by Abdel-Lateef (1988) and Muoneke et al., (2007) who found that, grain yield/plant was increased by increasing the distance between hill. While, treatment CS2 x T3 significantly recorded the maximum grain yield/fed. with both distribution maize plants in both seasons.

Plant height and 100-grain weight showed insignificant effects in both seasons in the interactions between planting time and distribution maize plants. On the other hand, ear leaf area and grain yield/ear were significant effects in both seasons and the highest values were found with treatment T3 x D2. While, treatment T1 x D1 recorded the highest grain yield/fed. in the first season, but in the second season there was no significant difference between treatments.

Data in Table (1) showed that, all studied traits recorded significant effects due to the interactions between cropping systems (CS), Time of planting (T) and distribution maize plants (D) in both seasons. The highest ear leaf area, 100-grain weight and grain yield/ear were found with treatment CS2 x T3 x D1 in both seasons. While, 240
grain yield/fed. was different from season to anther, but treatment CS_{2} x T_{1} X D_{1} recorded the highest values in the first season, and the same cropping system in the second season with both distribution maize plants and soybean planted 21 days after maize (T_{3}).

2-Soybean Yield and its Components:

Data presented in Table (2) showed that, the intercropping systems had significant effect on yield and other traits in both seasons. Cropping system 2 maize: 4 soybean (CS_{2}) had significant increments in each no.of pods/plant, 100-seeds weight, seed yield/plant and seed yield/fed. in both seasons, while treatment CS_{1} (one maize row: 2 soybean rows) recorded significant for plant height and seed yield per plant. Also, he found that, solid soybean planting had higher values of yield/feddan than those on intercropping patterns. These data are in agreements with those obtained by others (Sayed Galal et al., 1979 and Abd El-Lateef, 1988). The higher seed yield of sole over intercropped soybean had been reported by other workers (Olufajo, 1992; Muneer et al., 2004). Also, the reduction in intercropped soybean could be due to shading by the taller maize plants. Olufajo (1992) and O’Callaghan et al., (1994) reported that, shading by the taller plants in mixture could reduce the photosynthetic rate of the lower growing plants and thereby reduce their yields.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>plant height (cm)</th>
<th>no.of pods/plant</th>
<th>100 seed weight (g)</th>
<th>seed yield/plant (g)</th>
<th>seed yield/fed (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS_{1} T_{1}</td>
<td>91.50</td>
<td>96.76</td>
<td>95.33</td>
<td>78.00</td>
<td>83.00</td>
</tr>
<tr>
<td>CS_{2} T_{1}</td>
<td>93.00</td>
<td>98.00</td>
<td>90.00</td>
<td>80.00</td>
<td>84.00</td>
</tr>
<tr>
<td>CS_{3} T_{1}</td>
<td>95.00</td>
<td>99.00</td>
<td>93.00</td>
<td>83.00</td>
<td>88.00</td>
</tr>
<tr>
<td>Solid soybean</td>
<td>92.50</td>
<td>97.50</td>
<td>95.00</td>
<td>80.00</td>
<td>85.00</td>
</tr>
</tbody>
</table>

Metwally et al., (2005) reported that, alternating pattern produced lowest soybean yield/feddan than those obtained from mixed intercropping and solid cultures. Sayed Galal et al., (1979) found that, intercropped soybean yield/feddan ranged from 30 % to slightly more than 50 % of solid soybean plantings under alternating and mixed intercropping patterns.

Results in Table (2) showed that, treatment T_{1} recorded the highest values of plant height only in the first season, no.of pods/plant and 100 seed weight in both seasons. As well as, the maximum seed yield/fed was found with treatment T_{3} (589.67 kg) and T_{1} (623.83 kg) in the first season and the second season, resp. On the other hand, Muoneke et al., (2007) found that, no cropping system had effect on soybean plant height in both early and late cropping seasons, except at 8 weeks after planting when intercropped plants were taller than the sole crops. Crops with C4 photosynthetic pathways such as maize have been known to dominate when intercropped with C3 crops like soybean (Hiebsch, et al., 1995). Muoneke et al., (2007) found that, reduced C3 photosynthetic pathways due to specific competition and depressive effect of maize, a C4 species on soybean, a C3 crop. El-Harty et al., (2010) found that, the effect of planting date was more important than other factors on no. of
pods and seeds/plant. Interestingly, the effects of both seasons and planting date were more important than other factors on seed yield (t/fed). And also, found that, the highest seed yield/fed (1.28 t) was also obtained from the third sowing date (May 10th), while the lowest one (1.144 t) was obtained from the last one (May 25th). Addo-Quaye et al., (2011) found that, soybean planted before the introduction of maize (maize planted 14 days after soybean, maize planted 28 days after soybean) recorded higher grain yield than soybean introduced after maize. Similarly Nnoko and Doto (1980) observed that, planting soybean before cereal gave significantly higher yields than planting soybean at the same time or after the cereal, with the earlier planting schedule resulting in the highest yield.

Results in Table (2) showed that, plant height, 100-seed weight and seed yield/fed. recorded no significant effects by distribution maize plants in both seasons. On the other hand, increased by doubling distance between hills of maize plants increased plant height, no.of pods/plant, seed yield/plant and seed yield/fed. in both seasons.

The interaction between cropping systems (CS) and Time of planting (T) recorded significant values for all studied traits as shown as in Table (2). Cropping systems 2 maize:4 soybean (CS1) recorded the highest significant values for no.of pods/plant and 100-seed weight in both seasons when soybean planted before maize, while seed yield/fed. was differed from season to another, but the highest seed yield/fed. was recorded with the same cropping system (CS3) and both time of planting T2 (665.50 kg) and T1 (686.25 kg) in the first season and the second season, resp. On the other hand, the lowest seed yield/fed. found with treatment CS1 T1 in both seasons, as shown as in Table (2).

Table (2) showed that, the interaction between cropping systems (CS) and distribution maize plants (D) had significant effects on yield and other traits in both seasons, except plant height in the second season which recorded no significant. Cropping system (2:4) (CS2) and (D2) recorded the highest no.of pods/plant and 100-seed weight in both seasons when soybean planted before maize, while cropping system (2:4) and D1 recorded the highest values of 100-seed weight in both seasons and seed yield/plant in the second season. These results are in agreements with those obtained by Abdel-Lateef (1988) and Muoneke et al., (2007). While, treatment D1 and D2 significantly produced maximum seed yield/fed. with CS1 in first and second season, resp. on the other hand, the lowest seed yield/fed. recorded with treatment CS1 x D1 in both seasons.

Results in Table (2) showed that, the highest seed yield/fed. found with the interactions between (CS1) x (D2) and (T2) and (T3) in first and second season, respectively.

3- Land Equivalent Ratio (LER) and Competitive Ratio (CR):

Table (3) showed that, CS recorded significantly values of LER for both seasons. In general intercropping systems increased LER as compared to solid plantings of maize and soybean as shown in Table (2). Similar results found by (Pendleton et al., 1963; Wahua and Miller, 1978; Sayed Galal et al., 1983; Metwally, 1999; Metwally et al., 2003 and Metwally et al., 2005).

Table 3: Effect of intercropping systems on LER, net return/fed and CR in both seasons.

<table>
<thead>
<tr>
<th>Intercropping systems (CS)</th>
<th>Relative yield</th>
<th>LER</th>
<th>Total return/ Fed (L.E)</th>
<th>Netreturn/ Fed (L.E)</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maize</td>
<td>Soybean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS1</td>
<td>0.49</td>
<td>0.65</td>
<td>1.14</td>
<td>4329.68</td>
<td>2089.18</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
<td>0.72</td>
<td>1.29</td>
<td>4914.08</td>
<td>2639.08</td>
</tr>
<tr>
<td>CS2</td>
<td>0.66</td>
<td>0.65</td>
<td>1.31</td>
<td>4984.32</td>
<td>2743.82</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS1</td>
<td>0.53</td>
<td>0.60</td>
<td>1.13</td>
<td>4496.80</td>
<td>2255.90</td>
</tr>
<tr>
<td></td>
<td>0.62</td>
<td>0.78</td>
<td>1.41</td>
<td>5612.48</td>
<td>3337.48</td>
</tr>
<tr>
<td>CS2</td>
<td>0.67</td>
<td>0.66</td>
<td>1.33</td>
<td>5298.12</td>
<td>3057.62</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Maize</td>
<td>2008</td>
<td></td>
<td></td>
<td>3795.00</td>
<td>1445.00</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td></td>
<td></td>
<td>4056.80</td>
<td>1706.80</td>
</tr>
<tr>
<td>Solid Soybean</td>
<td>2008</td>
<td></td>
<td></td>
<td>3817.12</td>
<td>1617.21</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td></td>
<td></td>
<td>3901.00</td>
<td>1701.00</td>
</tr>
</tbody>
</table>

Farm gate price 1- Maize, L.E 220/ ardab 2- Soybean, L.E 4000/ ton
Total cost 1- Solid Maize: L.E 2350 2-Solid Soybean: L.E 2200
3- Inter Soybean with corn=total costs of corn+ some variable costs of soybean.
 a- Intercropped soybean with corn (1:2) patterns= 2240.5 L.E
 b- Intercropped soybean with corn (2:2) patterns= 2275.0 L.E
 c- Intercropped soybean with corn (2:4) patterns = 2240.5 L.E

According to Edje (1987), if the LER is equal to 1, then there is no difference in yield between growing the crop in pure or mixed stand. If the LER is greater than 1, there is a yield advantage when both crops were grown as mixed compared to pure stands? If however the LER is less than 1, it will be better in terms of yield to grow both crops separately, as it indicates yield disadvantage. In the present study the LER was greater than 1 in almost all the treatments, indicating that it is advantageous to grow maize and soybean in association than in pure stands. Ghaffarzaeh et al., (1994) showed that, soybean yield tends to be lower whilst maize yield tends to
be higher under soybean/maize intercropping systems. In cereal-legume intercropping, the cereal components usually tend to have greater competitive ability because of their relatively higher growth rate, height advantage, and more excessive root system (Ofori and Stern, 1987).

The highest values of LER showed with CS2 and CS3 in both seasons, which were no significant differences between them, as shown as in Table (3). Metwally et al., (2009 a) found that, LER was greatest in alternating ridges (2:2) than alternating ridges (2:4).

The economic return of intercropped maize with soybean as compared with solid plantings has been calculated (Table 3). The prices of the products used were the farm gate prices of maize grains and soybean seeds at 2009 season. Variable costs and total costs were estimated according to Agricultural Statistics Book (2007). Intercropping systems CS1 and CS2 recorded the highest net return per fed. (2743.82 and 3337.48) in the first and second seasons, respectively.

Data in Table (3) showed that, the better Competitive Ratio (CR) found at all intercropping systems CS1 and CS3, which was less than 1.00 but greater than 1.00 at CS2 suggesting that competition become more severe at CS2. Ghosh et al. (2006) had indicated that if competitive ratio was less than 1, there is a positive benefit and the crop can be grown in association, but if greater than 1, there was negative benefit. According to Willey and Rao (1980), competitive ratio (CR) gives a better measure of competitive ability of crops and can prove a better index as compared to aggressively.

Conclusions:

From this investigation it could be concluded that, The highest ear leaf area, 100-grain weight and grain yield/ear were found with treatment cropping system (2:4) x soybean planted 21 days after maize and second distribution of maize planting in both seasons. While, grain yield /fed. was different from season to anther, but treatment cropping system (2:2) x Soybean planted 21 days before maize and the first distribution of maize planting recorded the highest values of grain yield/fed. in the first season, and the same cropping system in the second season with both distribution maize plants and soybean planted 21 days after maize.

The highest seed yield/fed. was found with the interactions between cropping system (2:4) and the second distribution of maize planting and both time of planting soybean paired with maize and soybean planted 21 days after maize in first and second season, respectively.

Intercropping system (2:2) and (2:4) recorded the highest values of LER in both seasons. The better Competitive ration (CR) recorded with both cropping systems (1:2) and (2:4) in both seasons. The highest net return/fed. found with (2:4) and (2:2) in first and second season, respectively.

REFERENCES

Sayed Galal, Jr., 1984. Cairo "1" A seed stock developed from local germplasm of corn to cope with the prevailing small farm size in Egypt. Proc. 2nd Mediterranean Conf. of Genet. Cairo, March, 861-880.