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Abstract: In this study, modelling of abrasive wear resistance by means of artificial neural networks of 
Al-SiCp composites produced by cold pressing method were obtained using a back-propagation neural 
network that uses gradient descent learning algorithm. SiC particles with a 32 μm mean diameter were 
added to the matrix at 5, 10, 15 (wt) % fractions and powders were mixed with 99 % Al. MMC’s were 
fabricated by powder mixing and cold pressing under 400 MPa load and sintering at  400ºC. The wear 
tests were performed in loads of 2 and 8 N, the abrasive paper 120 and 400 mesh, the wear distance of 
20, 40 and 60 m by abrasive test apparatus and the wear losses were calculated. Microstructure 
examination at wear surface were investigated by optical microscopy, SEM and EDS. Specimens were 
tested for optical microscopy, SEM, EDS and metallographic evaluations.  After the completion of 
experimental process and relevant test, to prepare the training and test (checking) set of the network, 
results were recorded in a file on a computer. In neural networks training module, different SiC 
reinforcement fractions (wt), different wear distances, different feasible loads and different abrasive 
paper were used as input, mass loss of abrasive wear specimens at surface were used as outputs. Then, 
the neural network was trained using the prepared training set (also known as learning set). At the end 
of the training process, the test data were used to check the system accuracy. As a result the neural 
network was found successful in the prediction of modelling of mass loss values of Al/SiCp metal 
matrix composite materials processed with abrasive wear method and behavior.  
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INTRODUCTION 

 
Aluminum-based, particulate-reinforced metal matrix composites (MMCs) are of concerns for structural 

carrying outs where weight saving is of primary concern. Composites are used not only for their structural 
properties, such as high shear, tensile strength, modulus of elasticity but also for electrical, thermal, tribological, 
and environmental applications (Caligulu, U., 2005; Taskin, M., 2000). Researchers are putting much emphasis 
on the manufacturing, shaping, bonding problems to widespread the use of composites in common industry 
markets. The process is depended on a number of parameters in particular, the road of wear, feasible loads, lost 
mass, abrasive sandpaper and surface roughness.  

An artificial neural network is a parallel-dispensed information proceduring system. It stores the specimens 
with dispensed coding, thus forming a trainable nonlinear system. The main idea of neural network draw near to 
resembles the human brain functioning. Given the inputs and longing outputs, it is also self-adaptive to the 
habitat so as to respond different inputs rationally (Koker, R., N. Altinkok, 2005). The neural network theory 
deals with learning from the preceding obtained data, which is named as training or learning set, and then to 
check the system accomplishment using test data (Altinkok, N., R. Koker, 2005). Artificial Neural networks 
(ANNs) have been used to model the human vision system. They are biologically inspired and contain a large 
number of simple processing elements that perform in a manner analogous to the most elementary functions of 
neurons. Artificial neural networks learn by experience, generalize from previous experiences to new ones, and 
can make decisions. Neural elements of a human brain have a computing speed of a few milliseconds, whereas 
the computing speed of electronic circuits is on the order of microseconds. The ANNs are parallel process 
elements which has characteristic in below. 

-ANN is a mathematical model of a biological neuron.  
-ANN has very process elements which are related another.  
-ANN keeps knowledge with connection weights.  
Neural network models provide an alternative approach to implementing enhancement techniques. A simple 

process element of the NNs is given in Fig.1. Output of ith process element at this simple model is given at 
Equation 1. 
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Fig. 1: The mathematical model of neuron 

 
In there, a is activation function, θi is threshold value of ith process element. Knowledge processes of 

process element compose from two parts: input and output. Output of ith  process element is calculated with 
Equation 2 [5-6].  
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Neural networks were procured a basically different draw near to material modeling and material 

processing control techniques than statistical or numerical procedures. This method is feasible in many areas of 
engineering and has produced promising to prepare results in the areas of material modeling and proceduring. 
One of the main advantages of this approach is that there is no need to make a priori suppositions about material 
behavior although in more were sophisticated neural network modeling projects one may take advantage of the 
information of the procedure in network design. Even though multi-layered neural network models cannot make 
sure a global minimum solution for any given problem, it is a sensible supposition that if the network is trained 
on a extensive database with a suitable representation project, the resulting model will approximate all of the 
laws of mechanics that the actual material or process obeys (Chun, M.S., et al., 1999). 

Neural networks are essentially connectionist system, in which different nodes called neurons are 
interconnected. A typical neuron accepts one or more input signals and procures an output signal trusting in the 
proceduring function of the neuron. This output is conveyed to connected neurons in varying intensities, the 
signal intensity being decided by the weights. Feed forward networks are jointly used. A feed forward network 
has a consecutive of layers consisting of a number of neurons in each layer. The output of neurons of one layer 
come to exists input to neurons of the achieving layer. The first layer, called an input layer, accepts data from 
the outside world. The last layer is the output layer, which sends knowledge out to users. Layers that lie between 
the input and output layers are called hidden layers and have no direct touch with the environment. Their 
presence is needed in order to procure complexity to network architecture for modeling non-linear functional 
kinship. After choosing the network architecture, the network is tested by using back propagation algorithm, 
where back propagation algorithm is the productive optimization method used for underrating the error through 
weight arrangement The trained neural network has to be experimented by supplying testing data (Ganesan, G., 
et al., 2005; Li, H.J., et al., 2004; Taskin, M., et al., 2008). 

The basic fundamentals to build the system model on the basis of NN consist of:  
(a) connecting the artificial neurons into a network with respect to certain rules and a topology;  
(b) regulating the weights between neurons in term of an proofreading criterion;  
(c) establishing the topology and free parameters of the NN by learning specimen data (input patterns) 

repeatedly;  
(d) determining the system model by taking advantage of the strong learning ability of ANN (Fig.2).  
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Fig. 2: Scheme of modelling the system by ANN (Chun, M.S., et al., 1999). 
 
The information included in the illustration data was acquired via the improved back propagation (BP) 

learning algorithm. The parameters of the BP network were defined as follows: 
The input vectors [X = x0, x1, . . . , xn1]T 
The output vectors [Y = y0, y1, . . . , ym1]T 
where the symbols n, h and m represented the number of neurons in the input layer, the hidden layer and the 

output layer, sequentially.  
 

2. Materials And Experimental Procedures: 
2.1. Fabrication of Al-SiCp MMCs: 

SiC particulate Al alloy MMCs specimens to be produced by cold pressing method were fabricated by 
powder metallurgy process. SiC particles with a 32 μm mean diameter were added to the matrix at 5, 10, 15 (wt) 
% fractions and powders were mixed with 99 % Al.  Powders were properly mixed with mechanic mixers for 
homogeneity of the formation. The mixture was cold compacted at 400 MPa in the 12x60 mm steel dies. This 
is followed by sintering at 400ºC in argon atmosphere for 30 minutes.  

 
2.2. Abrasive Wear Resistance of Al-SiCp MMC Couples: 

Work pieces were prepared for abrasive wearing and surfaces to be weared were protected against corrosion 
and oxidation. Al alloy MMC specimens with 5-10-15 % SiC (wt) fractions were produced and wearing at 
abrasive wear apparatus. Schematic illustration of abrasive wear apparatus is given in Fig.3. The wear tests were 
performed in loads of 2 and 8 N, the wear distance of 20, 40 and 60 m by block on ring test apparatus and the 
wear losses were calculated. Abrasive paper with 120 and 400 mesh were employed as a wearing agent. Mass 
loses were measured by a SCALTEC X.105 electronic balance with a accuracy. 

 

 
 
Fig. 3: Schematic illustration of abrasive wear apparatus 

 
1. Load handle, 2. Load, 3. Cater screw, 4. Cater, 5. Abrasive sandpaper, 6. Gear box, 7. Specimen,  
8. Moving specimen conservative, 9. Bearing, 10. Spot, 11. Specimen press handle 
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2.3. Microstructure Examinations and Adhesive Wear Tests: 
After the wearing process, specimens were weighted for mass loss. Grinding of the surface were followed 

by etching with Keller etchant. Metallographic evaluations and investigations were made by the aid of optical 
microscopy, SEM and EDS.  

Modeling of mass loss values of abrasive wearing behavior at MATLAB program the wear distances, 
feasible loads, abrasive paper and SiCp reinforcement (weight) fractions were employed as input and mass loss 
of specimens of the weared surfaces were recorded as output parameters. Back propagation Multilayer 
Perceptron (MLP) ANN was used for training of experimental results. ANN modeling the mass loss of the 
surface of abrasive weared composites was carried out with the aid of ANN block diagram given at Fig.4. MLP 
architecture and training parameters were presented in Table 1.  

 
Table 1: MLP architecture and training parameters 

The number of layers  4 
The number of neuron on the layers  Input: 4, Hidden: 10, Output: 1 
The initial weights and biases  The Nguyen-Widrow method 
Activation functions  Log-sigmoid 
Training parameters Learning rule  Back-propagation 
Adaptive learning rate  Initial: 0.001 Increase: 1.1 Decrease: 0.5 
Momentum constant  0.95 
Sum-squared error  0.00000001 

 

 
Fig. 4: Block diagram of the ANN. 

 
RESULTS AND DISCUSSION 

 
3.1. Evaluation Of Wear Integrity And Parameters: 

Wear tests were performed under various parameters given in related sections. Results of wear and 
structural data of specimens were evaluated accordingly. Optical micrgraph and SEM of composite specimens 
namely (a), (b), (c) and (d) were presented in Fig.5. Structural distribution of Al-SiCp and EDS results of sample 
(b) were presented in Fig.6.  Reinforcing particles were homogenously distributed in the matrix. 
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Fig. 5: Micro structures of specimens application process abrasive wear 
     (a) Al      (b) Al-%5 SiC (c) Al-%10 SiC (d) Al-%15 SiC 
 

 
Fig. 6: EDS analysis of specimens (b) weared at %5 SiC 

 
Wear graphic of specimens were presented in Fig.7. Wear loses were increased with the increase of load. 

Wear loses were decreased while reinforcement fraction of composite were increased.  
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8 N-400 mesh Abrasive paper-% 5 SiC
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2 N-120 mesh Abrasive paper-% 10 SiC
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8 N-120 mesh Abrasive paper-% 10 SiC
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2 N-120 mesh Abrasive paper-% 15 SiC

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

0 20 40 60 80

Distance (m)

M
as

s 
lo

ss
 (

m
g

)

measured

predicted

 
 
 
 
 
 
 
 



Aust. J. Basic & Appl. Sci., 6(9): 264-274, 2012 

272 
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8 N-120 mesh Abrasive paper-% 15 SiC
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Fig. 7: Abrasive graphics of composites 

 
3.2. ANN Approach to Lost Mass Prediction: 

In this study, predictions of mass loss of abrasive wear MMC couples were performed by using a back-
propagation neural network that uses gradient descent learning algorithm.  

a) Wear distances, feasible load, abrasive paper and SiC particulate (wt) fractions were used as the model 
inputs while the mass loss was the output of the model. These datas were obtained from experimental works.  
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b) Comparison of experimental abrasive wear test results with predicted values inline with wearing 
parameters were presented in Table 2. and dimensional test results were presented Fig. 8. Experimental mass 
losses of specimens have shown a consistency with predicted results differing 0.01-5. These trained values can 
lead maximum 10 % error in mass loss calculations. 

c) The Sum-squared error (SSE) graphic trained for 5800 Epochs was presented in Fig.8. 
 

Table 2: Abrasive wear resistance of predicted values with actual values 
Sample 
No 

MMCs 
samples 

Loads 
(N) 

Abrasive 
paper 
(Mesh) 

Distances 
(m) 

Actual values of  
mass loss (mg) 

Predicted 
values of mass 
loss (mg)  

Error 
(MPa) 

% Error 

1 Al-%5SiCp 2 120 20 5.051 3.700 +1.351 +26.74 
2 Al-%5SiCp 2 120 40 10.017 8.600 +1.417 +14.14 
3 Al-%5SiCp 2 120 60 14.911 15.867 -0.956 -6.41 
4 Al-%5SiCp 8 400 20 1.571 1.068 +0.503 +32.01 
5 Al-%5SiCp 8 400 40 3.008 2.674 +0.334 +11.10 
6 Al-%5SiCp 8 400 60 4.265 3.921 +0.344 +8.06 
7 Al-%5SiCp 2 120 20 11.505 8.800 +2.705 +23.51 
8 Al-%5SiCp 2 120 40 22.224 21.000 -1.224 -5.50 
9 Al-%5SiCp 2 120 60 32.325 30.100 +2.225 +6.88 
10 Al-%5SiCp 8 400 20 2.385 3.010 -0.625 -26.20 
11 Al-%5SiCp 8 400 40 4.377 3.988 +0.389 +8.88 
12 Al-%5SiCp 8 400 60 6.137 6.545 -0.408 -6.64 
13 Al-%10SiCp 2 120 20 13.558 12.980 +0.578 +4.26 
14 Al-%10SiCp 2 120 40 26.702 26.172 +0.53 +1.98 
15 Al-%10SiCp 2 120 60 39.568 41.100 -1.532 -3.87 
16 Al-%10SiCp 8 400 20 11.483 9.300 +2.183 +19.01 
17 Al-%10SiCp 8 400 40 22.330 23.900 -1.57 -7.03 
18 Al-%10SiCp 8 400 60 32.844 31.000 +1.844 +5.61 
19 Al-%10SiCp 2 120 20 51.560 46.000 +5.560 +10.78 
20 Al-%10SiCp 2 120 40 102.296 96.000 +6.296 +6.15 
21 Al-%10SiCp 2 120 60 151.300 146.000 +5.300 +3.50 
22 Al-%10SiCp 8 400 20 32.014 27.200 +4.814 +15.03 
23 Al-%10SiCp 8 400 40 62.424 65.600 -3.176 -5.08 
24 Al-%10SiCp 8 400 60 89.623 92.700 -3.077 -3.43 
25 Al-%15SiCp 2 120 20 3.586 2.946 +0.64 +17.84 
26 Al-%15SiCp 2 120 40 5.865 5.173 +0.692 +11.79 
27 Al-%15SiCp 2 120 60 7.163 6.800 +0.363 +5.06 
28 Al-%15SiCp 8 400 20 0.346 0.425 -0.079 -22.83 
29 Al-%15SiCp 8 400 40 0.591 0.448 +0.143 +24.19 
30 Al-%15SiCp 8 400 60 0.793 0.729 +0.064 +8.07 
31 Al-%15SiCp 2 120 20 6.664 6.215 +0.449 +6.73 
32 Al-%15SiCp 2 120 40 11.973 12.460 -0.667 -5.57 
33 Al-%15SiCp 2 120 60 16.791 15.972 +0.819 +4.87 
34 Al-%15SiCp 8 400 20 1.212 1.000 +0.212 +17.49 
35 Al-%15SiCp 8 400 40 1.933 1.765 +0.168 +8.69 
36 Al-%15SiCp 8 400 60 2.336 2.108 +0.228 +9.76 

 

 
 
Fig. 8: Sum-Squared Error curve versus iteration number. 
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Conclusion: 
The overall performance of the model was quite satisfactory. The low error fractions indicate that ANNs 

could be a useful tool for modeling and predicting mass loss of  abrasive weared surfaces of SiCp reinforced Al 
alloy MMCs. Under given conditions, and with prescribed materials predicted mass loss can be utilized by 
designers and process engineers as and where necessary. Given and predicted values of  the ANN system can 
also be employed at feasibility programs at no cost. This can be handled as a cost saving item at advanced 
production planning. 
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