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 In this paper we compare several methods for estimating the parameters of a two-
parameter lifetime distribution that can be used for modeling bathtub hazard rate 

behavior. The estimation methods considered are: maximum likelihood, ordinary least 

squares, weighted least squares, Anderson-Darling, and Cramér-von Mises estimation 
methods.  These methods are compared by Monte Carlo simulations in terms of their 

biases and mean squared errors of the estimated parameters. The simulation study 

concludes  that the Anderson-Darling method is highly competitive with the maximum 
likelihood method in small and large samples. This conclusion is also supported with 

the analysis of real data sets. 
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INTRODUCTION 

 

 In the last years, many probability distributions have been proposed to model bathtub-shaped hazard rates. 

For reviews about bathtub-shaped hazard rate functions see, for example, Rajarshi and Rajarshi (1988). An 

interesting two-parameter lifetime distribution used to model bathtub-shaped hazard rate function has been 

considered by Chen (2000). In general probability distributions used to model bathtub-shaped hazard rate have 

three or more parameters. As pointed out by Xie et al. (2002), models with three or more parameters, 

considering limited amount of data, may provide inaccurate estimates of its parameters, then distributions with 

few parameters are important in reliability/survival analysis applications. 

Chen (2000) distribution has probability density function (p.d.f.) 

,0,,0)],1(exp[),|( 1   
 xexxxf x             (1) 

 

where   is a frailty parameter  and    is a shape parameter. The p.d.f. (1) is a decreasing (unimodal) function 

in x for all  0  and 10    )1(  . The modal point can be obtained as a solution in x of the equation  
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 The corresponding cumulative distribution function  (c.d.f.) and hazard rate function (h.r.f.), respectively, 

are given by 
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 The h.r.f.  (3) is a bathtub-shaped (increasing) function in x for all  0  and 10    )1(  . The 

absolute minimum value of  ),|( xh  occurs at the point  .]/)1[( /1 hx   
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 Xie  et al. (2002) pointed out that  Chen's model has two important features: (1) it has only two parameters 

to model the bathtub-shaped failure rate function (2) the confidence intervals for the shape parameter and the 

joint confidence regions for the two parameters have closed form expressions. 

 

 In this paper we consider five methods for estimating the parameters of Chen's distribution based on 

complete sample data. These methods are: maximum likelihood estimation (MLE), the ordinary least-squares 

estimation (OLSE), weighted least-squares estimation (WLSE), Anderson-Darling estimation (ADE) and 

Cramér-von Mises estimation (CvME). 

 The main aim of this paper is to compare the above five estimation methods via intensive simulation 

studies. Similar studies for other distributions can be found, for example, in Shawky and Bakoban (2012) for  

the exponentiated gamma distribution, Teimouri et al. (2013) for the Weibull distribution, and Usta (2013) for 

the extended Burr XII distribution. 

 In Section 2 we discuss the five estimation methods considered in this paper. The comparison of these 

methods in terms of bias and mean-squared error is presented in Section 3. The five estimation methods are used 

in fitting two real data sets in Section 4. Some concluding remarks are presented in Section 5. 

 

2. Estimation Methods: 

 In this section we describe the five considered estimation methods to obtain the estimates of the parameters  

  and   of Chen distribution. 

 

2.1 Maximum Likelihood Method: 

 Let  nxxx ,,, 21   be a random sample of size n from Chen distribution with parameters   and    with 

p.d.f. (1). The maximum likelihood estimates  MLÊ  and  MLÊ   of the parameters   and   , respectively, 

are obtained by maximizing, with respect to    and   , the log-likelihood function 
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These estimates can also be obtained by solving the score equations: 
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It follows that 
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where MLE


 is the solution of the non-linear equation 
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2.2 Least squares methods: 

 Let nnnn XXX ::2:1 ,,,   be the order statistics of a random sample of size n from a distribution with c.d.f. 

)(xF . It is well known that  
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2.2.1 Ordinary least squares method: 

 For the Chen distribution, the least square estimates OLSÊ  and  
OLSÊ   of the parameters   and   , 

respectively,  are obtained by minimizing the function:  
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These estimates can also be obtained  by solving the non-linear equations: 
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2.2.2 Weighted least squares method: 

 The weighted least-squares estimates WLSÊ  and  
WLSÊ   of the parameters   and   , respectively,  are 

obtained by minimizing the function: 
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These estimates can also be obtained  by solving the non-linear equations: 
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where ),|(.1    and  ),|(.2   are given by (10) . 

 

2.3 Minimum distance methods: 

 In this subsection we present two estimation methods for of the parameters   and   ,  based on 

minimization of goodness-of-fit statistics. This class of statistics is based on the difference between the estimate 

of the cumulative distribution function and the empirical distribution function. 

 

2.3.1 Anderson-Darling method: 

 The Anderson-Darling estimates  ADÊ  and  ADÊ   of the parameters   and   , respectively,  are 

obtained by minimizing, with respect to   and   , the function: 
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These estimates can also be obtained by solving the non-linear equations: 
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where ),|(.1    and  ),|(.2   are given by (10) . 

 

2.3.2 Cramér-von Mises method: 

 The Cramér-von Mises estimates CvMÊ  and 
CvMÊ  of the parameters   and   , respectively,   are 

obtained by minimizing, with respect to   and   ,  the function 
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These estimates can also be obtained by solving the non-linear equations: 
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where ),|(.1    and  ),|(.2   are given by (10) . 

 

3. Simulations: 

 In this section we present results of some numerical experiments to compare the performance of the five 

estimators discussed in the previous section. We have taken sample sizes  n=20, 30, … , 120, and parameter 

values  ),(  : (0.5, 0.5),  (0.5, 5), (5, 0.5),  (5,5).  Figures 1-2, respectively, show the shapes of the p.d.f. and 

h.r.f. corresponding to  the parameter values used in the simulations. 

 For each combination ),,( n , we have generated N=100,000 pseudo-random samples from the two-

parameter bathtub distribution using the inverse c.d.f. method:  
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where u is a uniform (0,1) observation. 

 The estimates were obtained in Ox version 6:20, (see Doornik, 2007), using MaxBFGS function. To assess 

the performance of the methods, we calculated the bias and the mean-squared error for the simulated estimates 

of  the parameters   and   : 
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 Figures 3-4 show, respectively, the  bias of the simulated estimates of   and   . From these two figures, 

we observe that: 

(1) all estimators of    are positively biased, 

(2) all estimators of     are positively biased except the OLSE of   is negatively biased, 

(3) the MLE or OLSE of    has smaller bias compared to other estimators, 

(4) the OLSE of   has the smallest absolute bias compared to other estimators, 

(5) the biases of all estimators of   and    tend to zero for large n, i.e. the estimators are 

asymptotically unbiased for the parameters. 

 Figures 5-6 show, respectively, the MSE of the simulated estimates of   and   . From these two figures, 

we observe that 

(1) the MSE of the ADE of   is the smallest among all other estimators, 

(2) the MSE of the ADE of    is the smallest among all other estimators when  ,40n  otherwise the MSE of 

the MLE of     is the smallest among other estimators, 

(3) the MSE of all estimators of   and    tend to zero for large n, i.e. all estimators are consistent for the 

parameters. 

 

4. Applications: 

 In this section we analyze two real data sets for comparing the considered five estimation methods for the 

Chen distribution. 
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Data set 1: (Fiegl and Zelen  1965) 

 This data set represents the survival times (in weeks) of 17 AG-positive patients (identified by the presence 

of Auer rods and/or significant granulator of the leukemia cells in the bone marrow at diagnosis) who died of 

acute myelogenous leukemia: 

65, 156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65. 

  
(a) 5.0,5.0                                                            (b) 5,5.0    

  
(c) 5.0,5                                                               (d) 5,5    

Fig. 1: Shapes of the probability density function used in the simulations. 

  
(a) 5.0,5.0                                                            (b) 5,5.0    

  
(c) 5.0,5                                                        (d) 5,5    

Fig. 2: Shapes of the hazard rate function used in the simulations. 

 

 

Data set 2: (Lawless 2003) 

 This data set represents the number of 1000s of cycles to failure for 60 electrical appliances in a life test: 

0.014, 0.034, 0.059, 0.061, 0.069, 0.080, 0.123, 0.142, 0.165, 0.210, 0.381, 0.464, 0.479, 0.556, 0.574, 0.839, 

0.917, 0.969, 0.991, 1.064, 1.088, 1.091, 1.174, 1.270, 1.275, 1.355, 1.397, 1.477, 1.578, 1.649, 1.702, 1.893, 

1.932, 2.001, 2.161, 2.292, 2.326, 2.337, 2.628, 2.785, 2.811, 2.886, 2.993, 3.122, 3.248, 3.715, 3.790, 3.857, 

3.912, 4.100, 4.106, 4.116, 4.315, 4.510, 4.580, 5.267, 5.299, 5.583, 6.065, 9.701. 

Figure 7 shows the empirical scaled TTT-transform (Aarset 1987): 
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for data sets 1 and 2. The figure also shows that each transform  changes behavior from convex to concave, 

indicating a bathtub shaped failure rate function of the underlying population from which the data is drawn. 
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(a) 5.0,5.0                                     (b) 5,5.0    

 

                     
(c) 5.0,5       (d) 5,5    

Fig. 3:  Bias of  ̂  (□ : MLE, ○ : OLSE,  : WLSE, ◊: CvME,  : ADE). 

 

                     
(a) 5.0,5.0                                           (b) 5,5.0    

                      
(c) 5.0,5                                               (d) 5,5    

Fig. 4: Bias of  ̂  (□ : MLE, ○ : OLSE,  : WLSE, ◊: CvME,  : ADE). 
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(a) 5.0,5.0                                               (b) 5,5.0    

 

                     
(c) 5.0,5    (d) 5,5    

Fig. 5: MSE of  ̂ (□ : MLE, ○ : OLSE,  : WLSE, ◊: CvME,  : ADE). 

 

                     
(a) 5.0,5.0    (b) 5,5.0    

                     
(c) 5.0,5    (d) 5,5    

Fig. 6: MSE of  ̂  (□ : MLE, ○ : OLSE,  : WLSE, ◊: CvME,  : ADE). 
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(a) Data set 1 

 

(b) Data set 2 

 

Fig. 7: Empirical scaled total time on test for data sets 1 and 2. 

 

 

 Table 1 (2) shows that  the Anderson-Darling (Cramér-von Mises) estimation method has the smallest 

statistic and highest p-value of the K-S goodness-of-fit test. That is, the Anderson-Darling (Cramér-von Mises) 

estimation method is the preferred method for data set 1 (2) among the five considered estimation methods. 
 

 

Table 1: Parameters estimates and  K-S goodness-of-fit test for data set 1. 

 
 

 

Table 2: Parameters estimates and  K-S goodness-of-fit test for data set 2. 

 
 

5. Conclusions: 

 In this paper we compared, via intensive simulation experiments, the estimation of the parameters of the 

two-parameter bathtub distribution using five estimation methods, namely the maximum likelihood, ordinary 

least-squares, weighted least-squares, Anderson-Darling and Cramér-von Mises. The simulation study concludes 

that the Anderson-Darling estimation method is highly competitive with the maximum likelihood estimation 

method for most practical sample sizes. This conclusion is also supported with the analysis of real data sets. 
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