
Australian Journal of Basic and Applied Sciences, 8(3) March 2014, Pages: 69-76

AENSI Journals

Australian Journal of Basic and Applied Sciences

 ISSN:1991-8178

Journal home page: www.ajbasweb.com

Corresponding Author: Abubakr Khamis, Computer & Information Science Department, University Technology Pertonas,

Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia.

Characterizing A Malicious Web Page

Abubakr Khamis, Baharum Baharudin, Low Jung

Computer & Information Science Department, University Technology Pertonas, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia.

A R T I C L E I N F O A B S T R A C T

Article history:
Received 26 January 2014

Received in revised form 10

March 2014
Accepted 12 March 2014

Available online 5 April 2014

Keywords:

Malicious, Benign, Feature, Detector,
Page Content, Script, Learning, URL

lexical.

 Background: The web page has become a great environment for those with malicious
intent to perform some unwanted activities or launch attack. The attackers normally

embed the malicious contents in the compromised web page or inject links to fake web

pages they have created. Unhappily attacks are becoming more sophisticated by using
complicated techniques to evade detection. The victim’s system can be infected by just

a single visit to a web page and the attack sometimes can be silent and unnoticeable.

Often, the attacker focuses on a web site that has become the centre of attention, and
then exploits the system’s vulnerabilities and launches the attack. Objective: To

provide a lightweight framework for malicious web page detection in order to reduce

the threats of the web-based attacks and mitigate the risk. Results: Comparing with
different approaches, our experiment with real world data set has shown a significant

result, and our approach is able to reach 97% detection. Conclusion: We have proposed

a framework for identifying a malicious web page as either benign or malicious using
supervised machine learning techniques. The malicious web page has been

characterized by a vector of discriminative features, and based on HTTP response we

have collected two groups of features, the URL string lexical features and the page
content features. When comparing with other works, the proposed framework

effectively mitigates threats and less execution overhead.

© 2014 AENSI Publisher All rights reserved.

To Cite This Article: Abubakr Khamis, Baharum Baharudin, Low Jung., Characterizing A Malicious Web Page. Aust. J. Basic & Appl.

Sci., 8(3): 69-76, 2014

INTRODUCTION

The internet has become an essential part in our daily life. It is the base of banking transactions, shopping,

entertainment, resource sharing, news, and social networking. The growth of the web has also rewarded cyber

criminals to take the chance and conducts their illegal actions. With this growth, the design and the use of the

malware scenario has also changed. Nowadays damaging the machines is not the target any more. The malware

tactics are stealthier and polymorphic to avoid the detection mechanism. The majority of the web malware

tactics is either to steal the user’s private data, such as credit card details and passwords, or force the victim

system to join a malware distribution network. One of the most common methods for spreading malware today

is through web pages, which exploit the vulnerabilities in web browsers, web applications, and operating

systems, and trying to gain control of a victim’s machine. Victims’ machine is then used as a host to various

malicious activities like: heap spray, botnet, key loggers, sending spam emails, or distributed denial of service.

The attack occurs when a user visits a suspected website. Therefore the attacker focuses on a web site that

has become the centre of attention, and then exploits the vulnerabilities and launches the attack silently without

the user consent, and sometimes with your consent leveraging some social engineering scenarios. Managing/

handling Web page attack is a challenge, and necessitates a careful understanding of the details and the

behavior. To enrich the web applications, browser vendors supported active client-side content with many

techniques. Among these techniques is JavaScript, which is most widely used as a primary component of active

and dynamic web content, and at the same time providing a great chance for the web exploits. Other techniques

such as PHP language, adobe flash, and visual basic are also provides opportunities for these exploits. All these

techniques have in common the capability of downloading and executing code from the Internet [8]. In addition

most browsers have a feature of plug-ins, which allow third parties to extend the functionality of the browser,

and this may add a chance for exploit. And all plug-ins commonly have higher privileges to run than the

embedded script code unless there are explicit restrictions on that.

Although several solutions have been proposed to fight malicious software such as network intrusions,

malware detecting and preventing, malicious email attachments, web site exploits has not received much

70 Abubakr Khamis et al, 2014

Australian Journal of Basic and Applied Sciences, 8(3) March 2014, Pages: 69-76

attention so far. This work is continuing to add some values to the malware field combat by mitigating some

threats, and improve performance by enhancing the detection rate.

Related Work:

Existing detection approaches can be classified into: signature-based, behavior monitoring, and machine

learning. And the feature analysis method followed by them can be grouped in three types: URL and domain

analysis, page content analysis, behavior analysis.

URL and Domain Analysis:

 The universal resource locator (URL) textual form was used in malicious web page detection methods and

some distinguishable URL criteria have been used to give a sign of the potential maliciousness based on URL

lexical and host-based features using on line learning classifiers, and their experiment has shown some effective

results. Yoshiro Fukushima et.al (Fukushima, Hori et al. 2011) analyzed characteristics of malicious Web sites

by their domain information. They studied the IP address block, IP address, domain, and registrar, and evaluated

the reputations of IP address blocks and registrars used by attackers. Then, they proposed a blacklisting scheme

derived from the combination of IP address block and registrars with low reputation that is intensively used by

attackers. A hierarchical structure graph is constructed using the extracted information. Zhang et.al (Zhang,

Seifert et al. 2011) provided a model for determining a malware distribution networks from the secondary

URLs, and redirect chains recorded by a high-interaction client honeypot. The method also encompasses a

drive-by download detection mechanism based on a set of regular expression-based signatures.

Page Content Analysis:

 HTML tags and JavaScript have been used a lot to launch attacks, especially the latter which is useful in

embedding tasks into a web page. It enhances the capabilities of HTML by some wonderful features such as:

Higher-order functions, dynamic typing and flexible object model. Cove et.al (Cova, Kruegel et al. 2010) have

introduced an approach for detection and analysis of malicious JavaScript code based on assigning probability to

a feature that reflects the likelihood that a given feature value occurs. The approach combines anomaly detection

with emulation to identify malicious JavaScript code. Byung-Ik Kim et.al (Kim, Im et al. 2011) proposed a

hybrid JavaScript obfuscation strength examination system to detect malicious contents of a web page. The

system used the characteristics of obfuscated JavaScript instead of the analysis that focuses on the meaning of

strings. The study selected N-Gram, entropy and word size as the primary items to be scrutinized. The primary

criteria that are scrutinized include string length, density, frequency of the particular function, frequency of

special characters, and entropy value. These criteria are used to measure the obfuscation strength of an

obfuscated website. Yuan-TsungHouet.al (Hou, Chang et al. 2010) proposed a malicious web page detection

model using the boosted decision tree learning algorithm. The classification algorithm used the dynamic HTML

features combined with some Java script native functions. Le et.al (Van Lam Le, Gao et al. 2011) presented a

scoring mechanism for potential malicious pages, which uses static features. The mechanism is used as a filter

that assists in reducing the number of suspicious web pages that might need extra analysis by other mechanisms

that require loading and interpretation of the web pages. Van Lam Le et.al (Van Lam Le, Gao et al. 2011) have

introduced a two-stage classification model to detect malicious web page based on information gain values. In

the first stage, the URL is inspected to extract the potential static feature, while in the second one only potential

malicious page that has been identified in the first stage is scanned to extract run-time features. They have

selected 52 potential features from the malicious contents, and they used four values to measure it at first sight:

minimum, maximum, mean and median. Mario Heiderichet.al (Heiderich, Frosch et al. 2011) introduced an

approach that performed lightweight instrumentation of JavaScript, detecting attacks against the HTML

document object model (DOM) tree, and also able to mitigate improved PHoneyC and LibemuShellCode

detection to collect malware scenario, and the result outperformed Google’s safe browsing. S. Chitraet.al

(Chitra, Jayanthan et al. 2012) have provided an approach for detecting a malicious web page using genetically

evolved fuzzy rules. The rules are filtered by SVM and the result is stored as a symbolic knowledge

representation. They used a symbolic and non-symbolic knowledge-base in their approach, and only 21 optimal

features of a web page have been investigated in a virtualized environment. The approach has shown good

result. Eshete et.al (Eshete, Villafiorita et al. 2012) presented of a web page. Ma et.al (Ma, Saul et al. 2011)

introduced malicious web site detection model based on URL features. The model used three different online

classifiers algorithms: Naïve Bayesian, SVM and logistic regression. The model categorized the features of

URLs as being either lexical or host-based features. Zhang et.al (Zhang, Ding et al. 2011) provided a study on

detecting malicious web pages BINSPECT, that uses static analysis and browser emulation and apply

supervised learning techniques in detecting malicious web pages by proposing three feature groups, URL, page-

source and Social-Reputation Features. BINSPECT achieved about 97% accuracy with low false signals with

quite execution overhead.

71 Abubakr Khamis et al, 2014

Australian Journal of Basic and Applied Sciences, 8(3) March 2014, Pages: 69-76

Behavior Analysis:

 Xuet.al (Xu, Yao et al. 2011) proposed a model for detecting the infection that is delivered through

vulnerable applications and web browser. The detection engine depended on the dependency between a user’s

action and system’s event. Two components were used to record user behavior; one at kernel level, and another

as a Firefox extension. Hsu, F.H., et al (Hsu, Tso et al. 2011) have proposed a runtime, behavior-based

solution, to protect the system against drive-by-download attacks. The approach utilized the browser helper

object (BHO) mechanism of Windows operating system to implement the framework on internet explorer 7.0.

The experimental results have shown low performance overhead without false positives and false negative rates.

As a conclusion, the URL and domain analysis method is a very useful idea, but the limitation of this

method is that the malicious URL does not mean that the corresponding page holds malicious contents and vice

versa. On the other hand the drawback of the JavaScript-Based method is that the attack might be launched

through Obfuscated mechanism, while the page content-based method faces the challenge of the continuous

changing of the attack features, which require continuous update.

MATERIALS AND METHODS

 The model mainly composed of three components, Feature Extractor, Learning and Model Selection and the

Detector as shown in Fig. 1. It starts with the feature extraction process via feature extractor component, and

then the URL lexical features and page content features are collected together as one group and send to the

detector. The model selector is developed for the training purpose to produce the final classification model.

Fig. 1: the general structure of the approach

Feature Extractor:

This is the first component, which is responsible for capturing the web page features. It consists of:

Jericho3.3 HTML parser, JavaScript engine and URL lexical class using Java. This part is important mainly

because, it is essential to collect the candidate features and prepare the data set.

Learning and Model Selection:

It necessitates the data set for learning to build the model, and according to the performance, the model

selector selects the learning model of the best result among different machine learning algorithms.

Detector:

The detector is using the final classification model generated from the Learning and Model Selector

component.

Malicious Web Page Characterization:

There are a lot of candidate features that can support the degree of maliciousness of a web page and

considered as the target of intruders. In our study we have selected 39 features.

URL

Features Extractor

Page Contents Lexical Features

Detector

Result

Training Set

Learning

Model Selector

72 Abubakr Khamis et al, 2014

Australian Journal of Basic and Applied Sciences, 8(3) March 2014, Pages: 69-76

URL Lexical Features:

The uniform resource locator (URL) textual form was used in malicious web page detection methods (Ma,

Saul et al. 2011)-(Zhang, Ding et al. 2011) , and some distinguishable URL criteria have been used to give a

sign of the potential maliciousness of a web page. The lexical features of the URL are not the page content that

it refers to, but they are only the partitions of the URL string. We have studied the case deeply and determined

some characteristics which differentiate the good reputation web pages from the bad ones. We have explored

around 18 different features and only 10 most significant features have been selected as shown in Table 1.

Table 1: The URL lexical Features

No Features Type

1 The length of host name integer

2 The number of delimiters in host name (-,_) integer

3 The length of file name integer

4 The number of digits in host name integer

5 The total length of the URL integer

6 The number of arguments integer

7 The number of directories integer

8 The number of digits in path integer

9 The length of directories integer

10 The maximum length of tokens integer

Page-contents Features:

Some HTML tags in general have been known as a common method used to load the malware from the

outside. These tags include: body, iframe, img, meta, applet, frameset, style, layer, ilayer, embed, script, form,

object, link, and normal hyperlink. And some tags are commonly used and targeted by intruders to deliver

foreign malicious contents. On the other hand JavaScript is a useful language in embedding tasks into a web

page, but when some functions are misused it’s so harmful such as: escape, unscape, eval, exec, and unbound,

including its ActiveX objects. In addition, the code obfuscation plays a great role in hiding the malware.

Therefore we have taken under consideration some features like: obfuscation attempt including encoding and

mathematical functions, length and number of scripts, harmful keyword, internal and external scripts, and

number of methods. On the other hand implementing security features in browsers using cryptographic

algorithm is important for protecting a user credential from man in the middle attack, but still there is a

resistance from browser JavaScript to cryptography. The total number of features that we have selected is 29.

Table 2 shows the selected page content features.

Table 2: The Page Content Features

No Features Type

1 The number of total links integer

2 The number of external links integer

3 The number of encoded links integer

4 The number of Iframe integer

5 The number external Iframe source integer

6 The abnormal visibility fingerprint Boolean

7 The number Applets integer

8 The number of Objects integer

9 The number of Scripts integer

10 The number of PHP dangerous functions integer

11 The number of harmful links integer

12 The number of forms integer

13 The number of external form action integer

14 The length of the script integer

16 The number of native functions integer

17 The number of redirects integer

18 The number of methods integer

19 The number harmful keywords integer

20 The number of interaction events integer

21 The use of encoding methods Boolean

22 The number of encoded links integer

23 The existence of obfuscation signs Boolean

24 The number of external Script source integer

25 The number of forms predefined values integer

26 The number of documents declaration integer

27 The number of XML declaration integer

28 The number of new TAGs declaration integer

29 The maximum length of links integer

73 Abubakr Khamis et al, 2014

Australian Journal of Basic and Applied Sciences, 8(3) March 2014, Pages: 69-76

The Classification Model:

Support Vector Machine (SVM):
It is a classification method introduced in 1992 by Boser, Guyon, and Vapnik (Lee and Huang 2007). The

original optimal hyperplane algorithm proposed by Vladimir Vapnik in 1963 was a linear classifier. However, in

1992, Bernhard Boser, Isabelle Guyon and Vapnik suggested a way to create non-linear classifiers by applying

the kernel trick to maximum-margin hyperplanes. The resulting algorithm is formally similar, except that every

dot product is replaced by a non-linear kernel function. This allows the algorithm to fit the maximum-margin

hyperplane in a transformed feature space. The transformation may be non-linear and the transformed space

high dimensional; thus though the classifier is a hyperplane in the high-dimensional feature space, it may be

non-linear in the original input space. In dealing with large data sets, the support vector machine (SVM) was

proposed for the practical objective to overcome some computational difficulties as well as to reduce the

complexity (Lee and Huang 2007). The SVM is widely used due to its ability to deal with high-dimensional,

flexibility, and high accuracy.

Decision Tree (DT):

It is a machine learning classifier based on the tree structure. Each node in the tree is associated with a

particular feature, and the edges from the node separate the data based on the value of the feature. Each leaf

node binds to a class in the classifier model. By tracking the nodes from the root of the tree based on the feature

values, one can get the predicted class of it. The training data is the key point for the information gain (IG) of

the feature and feature selection policy (Kohavi and Quinlan).

K nearest-neighbor (KNN):

It is a simple algorithm for predicting a class of an example. This classifier is supervised learning based on

the distance of the example. The training stage simply stores all training examples with their labels. To predict

the class for a new test example, first it computes its distance to every training example and then, keeps the k

closest training examples, where k ≥ 1. Finally, it looks for the label that is most common among these

examples. This label is assigned to this test example as the predicted result (Elkan 2007).

Artificial Neural Network (ANN):

It is a solution inspired by biological neural networks. An artificial neuron is a computational model

receives signals through synapses located on the dendrites. When the signals received are exceeded a certain

threshold value, the neuron is activated and emits a signal though the axon. The emitted signal might be sent to

another synapse, or activate other neurons (Gershenson 2003). ANN can be viewed as directed graphs with

weights, which artificial neurons are nodes and directed edges represent the connections between neuron outputs

and neuron inputs. According to the connection pattern, ANNs can be put into two groups: feed-forward

networks, and feedback networks (Jain, Mao et al. 1996).

RESULT AND DISCUSSION

In this section, first we detail data source and sets, and experiments scenario. Second we evaluate our

approach targeting the accuracy and feature significance, and lastly we compare the method with the other

previous work and discuss the method.

Data Set and Data Source:

To collect our experimental dataset, we have set up a virtual machine with a browser emulator. The dataset

is composed of benign and malicious instances; the benign set is collected via web search and Alexa website

ranking verified by Google safe browsing (Van Lam Le, Gao et al. 2011). The malicious set is collected from

some of the common public announced malware and exploited websites (Tao, Shunzheng et al. 2010)-(Zhang,

Ding et al. 2011) such as malwaredomainlist.com, StopBadWare, alwaredomains.com, PhishTank.com and

malwareurl.com.

The collected dataset is divided into two groups training and test. The training set consists of

44000instances (32000 benign, 12000 malicious), the test set consists of 3765 instances (1386 benign, 2379

malicious).

Experimental Procedure:

The experiment is carried out in four steps. Firstly, we prepared the lists of malicious and benign URL

separately. Secondly, we extracted the page content and the URL lexical features and put them into two groups

training and test group. Thirdly, the training set is send to the classification algorithm to generate the model.

And finally, the generated model is tested using the test data set.

74 Abubakr Khamis et al, 2014

Australian Journal of Basic and Applied Sciences, 8(3) March 2014, Pages: 69-76

The Evaluation:

The accuracy is defined as the ratio of correctly identified examples over all examples in the test set. The

detector was tested using 3765 instances consisting of 2379 malicious and 1386 benign instances. Where benign

instances are negative example and malicious ones are positive. The evaluation involved four different

classifiers based on two features groups and the performance is shown in Table 3.

Table 3: The Accuracy with the new features

Algorithm Recall (%) Specificity (%) Accuracy (%)

SVM 96.85 94.95 96.15

KNN 85.16 97.19 89.59

DT 93.91 98.85 95.72

ANN 95.75 98.05 96.60

The ROC curve Fig. 2 shows that the artificial neural network achieved the best performance in both true

positive rate and false positive rate. The desired false positive rate is above0.01 and below 0.1.

Fig. 2: the ROC Curve

The Features Significance:

In this study we have analyzed the characteristics of the malicious web pages and presented the most

relevant features for the attack scenario, in addition to the effectiveness of these features, also they remain

resilient against possible anticipated future attack. The experimental results show that the URL lexical features

can give distinguishing values for the malicious web pages and raise up the true positive rate. As well as the

JavaScript features, it has a significant effect on the true positive rate, which leads to an improvement in the

accuracy. The HTML features are easier to be used by the attacker and easier to be captured by detection

engines, therefore the attackers usually encode the target code to circumvent the signature-based detection

engine, but if most of the code is encoded, some native functions are still needed in a plain text without

encoding to render the page. Moreover the HTML features can also reduce the false positive rate. Based on the

results, the combination of these feature groups has shown the higher true positive rate and lower false positive,

which play a great role in the accuracy improvement. Table 4 shows how the accuracy went down when we

selected the reused features.

Table 4: The Accuracy with existing features

Algorithm Recall (%) Specificity (%) Accuracy (%)

SVM 91.38 90.98 91.24

KNN 71.54 97.69 81.17

DT 87.73 98.70 91.77

ANN 85.62 97.11 89.85

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-Specificity

S
e

n
s
it
iv

it
y

SVM

KNN

DT

ANN

75 Abubakr Khamis et al, 2014

Australian Journal of Basic and Applied Sciences, 8(3) March 2014, Pages: 69-76

Comparison with Related Work:

In the table below study, we compare with other related work using three points, the number of features, the

methods, and the detection accuracy as shown in Table 5.

Table 5: The Accuracy of related work

Work Number Features Method Accuracy (%)

(Chitra, Jayanthan et al.
2012)

21 Dynamic 95.6

(Tao, Shunzheng et al.

2010)

23 Static 92.2

(ESHETE, VILLAFIORITA

ET AL. 2012)
39 Hybrid 97.0

(Van Lam Le, Gao et al.

2011)

26 Hybrid TP=86.0

This work 39 Static 96.6

In addition, we compare with other related work using three points, the used features, feature analysis

methods applied, and the detection effectiveness.

Ma et.al (Ma, Saul et al. 2011) introduced a static technique based on URL lexical and host features using

supervised learning techniques, the model was able to achieve 99% accuracy with a low false positive signal.

However, they depend only on URL and host-based feature without further investigation on the page content

features. In our model, we applied further analysis on page content feature by using HTTP response, which

added some capabilities to detect more attack attempts.

Zhang et.al (Zhang, Ding et al. 2011) provided study how detect malicious web pages based on URL

lexical and host-based features using on line learning classifiers, their experiment has shown some effective

results. In our case we used page content in addition to URL lexical in order to collect more attack features.

Wang Tao et.al (Tao, Shunzheng et al. 2010) proposed a framework that identified the malicious web page

based on HTTP session header including both domains of request and response. The model studied the

performance of three different classifiers; Naïve Bayesian, decision tree (C4.5) and support vector machine with

92.2% detection rate. Unlike our case, they used only session header instead of page contents. In our case, the

page content feature is used, which added accurate performance and better result.

Eshete et.al (Eshete, Villafiorita et al. 2012) presented BINSPECT, based on three feature groups: URL,

page-source and Social-Reputation Features, using hybrid static and dynamic analysis. Using supervised

learning techniques BINSPECT achieved about 97% accuracy with low false signals with quite execution

overhead, unlike our case, which is lightweight with no more execution complexity.

Chitra et.al (Chitra, Jayanthan et al. 2012) provided a predicate based algorithm for malicious web page

based on 21 of page content features using genetically evolved fuzzy rules. The rules are filtered by SVM and

the result is stored as a symbolic knowledge representation. The approach has shown good result and the

detection accuracy reached 95.6%.unlike our case, we used more features with learning techniques and we have

got better result.

Discussion:

The experiment has been conducted and ran without unusual inputs that would have introduced errors, all

features were positive integer values. All abnormal cases due to the unavailable page of uncaptured redirection

have been traced manfully from the log file. Because we were using mostly static technique some

misclassification errors might arise up, we do not expect our algorithm to be as accurate as the dynamic

collection of a web page features.

Although our algorithm provided useful features that can successfully distinguish malicious from benign

web page. If a benign page has been incorrectly classified as malicious by our algorithm, that might be of the

use of some JavaScript functions or key words considered as harmful during the development of the page and

our algorithm might applied some penalties on it. But, if a malicious page has been classified as benign, that

might be some dynamic characteristics this page have been missed. Therefore such dynamic pages are target for

further analysis technique such as, dynamic mechanism or client honey client systems.

Furthermore the highly obfuscated JavaScript client-side code might trick our algorithm because obfuscated

content has less consideration in our system. In addition, the malicious link within the benign content, attackers

might mimic the benign content of some good reputable web pages to pass as benign, and then luring the user

follow their malicious link, but even this malicious link might not pass when landing separately. In this context,

user must be careful and cautious when browsing.

76 Abubakr Khamis et al, 2014

Australian Journal of Basic and Applied Sciences, 8(3) March 2014, Pages: 69-76

Conclusion and Future Work:

The idea behind doing this work is to provide a lightweight early assessment model in order to reduce the

threats of the web-based attacks. In this paper we provide a mostly static identification mechanism for potential

malicious web page using machine learning algorithms. The identification algorithm is based on two features

group, the URL lexical features and the page content. Based on the HTTP response and without fully rendering

the page we have collected the candidate lexical and page content features. And then we trained the classifiers

and test the model. The experiment has shown the expected result, and as a comparison to similar work our

model is able to reach 97% accuracy.

The drawback of this work is that we have used the partial rendering method based on HTTP response to

identify the maliciousness of a web page. One of the solutions is to integrate a dynamic behavior monitoring

unit to trace the client-server interactions. Moreover, the updated model could be integrated with the internet

browser.

Our initial result in identifying malicious web page is efficient, but so some future endeavors’ can be done

to improve the general performance of the model. Moreover the model can be extended to include run-time

feature collection unit. There are some challenges on the way such as: the change of the attack feature, the

efficient algorithms, and effective comparative measures, therefore the future research may focus on tracing the

attack vector features and paying a lot of attention on feature selecting methods, which might incorporate

several disciplines to achieve the best performance.

REFRENCES

Chitra, S., K. Jayanthan, S. Preetha and R.N.U. Shankar, 2012. Predicate based Algorithm for Malicious

Web Page Detection using Genetic Fuzzy Systems and Support Vector Machine. International Journal of

Computer Applications., 40(10).

Cova, M., C. Kruegel and G. Vigna, 2010. Detection and analysis of drive-by-download attacks and

malicious JavaScript code, ACM.

Elkan, C., 2007. Nearest neighbor classification. University of California–San Diego.

Eshete, B., A. Villafiorita and K. Weldemariam, 2012. BINSPECT: Holistic Analysis and Detection of

Malicious Web Pages.

Fukushima, Y., Y. Hori and K. Sakurai, 2011. Proactive Blacklisting for Malicious Web Sites by

Reputation Evaluation Based on Domain and IP Address Registration, IEEE.

Gershenson, C., 2003. Artificial neural networks for beginners. arXiv preprint cs/0308031.

Heiderich, M., T. Frosch and T. Holz, 2011. Iceshield: Detection and mitigation of malicious websites with

a frozen dom, Springer.

Hou, Y.T., Y. Chang, T. Chen, C.S. Laih and C.M. Chen, 2010. Malicious web content detection by

machine learning. Expert Systems with Applications., 37(1): 55-60.

Hsu, F.H., C.K. Tso, Y.C. Yeh, W.J. Wang and L.H. Chen, 2011. BrowserGuard: A Behavior-Based

Solution to Drive-by-Download Attacks. Selected Areas in Communications, IEEE Journal on., 29(7): 1461-

1468.

Jain, A.K., J. Mao and K.M. Mohiuddin, 1996. Artificial neural networks: A tutorial. Computer., 29(3): 31-

44.

Kim, H.C.J.B.I., C.T. Im and H.C. Jung, 2011. Suspicious malicious web site detection with strength

analysis of a javascript obfuscation. International Journal of Advanced Science and Technology., pp: 19-32.

Kohavi, R. and R. Quinlan, C5. 1.3 Decision Tree Discovery.

Lee, Y.J. and S.Y. Huang, 2007. Reduced support vector machines: A statistical theory. Neural Networks,

IEEE Transactions on., 18(1): 1-13.

Ma, J., L.K. Saul S. Savage and G.M. Voelker, 2011. Learning to detect malicious URLs. ACM

Transactions on Intelligent Systems and Technology (TIST) 2(3): 30.

Tao, W., Y. Shunzheng and X. Bailin, 2010. A Novel Framework for Learning to Detect Malicious Web

Pages, Ieee.

Van Lam Le, I.W., X. Gao and P. Komisarczuk, 2011. Identification of Potential Malicious Web Pages.

Van Lam Le, I.W., X. Gao and P. Komisarczuk, 2011. Two-Stage Classification Model to Detect Malicious

Web Pages, IEEE.

Xu, K., D. Yao, Q. Ma and A. Crowell, 2011. Detecting infection onset with behavior-based policies, IEEE.

Zhang, J., C. Seifert, J.W. Stokes and W. Lee, 2011. ARROW: GenerAting SignatuRes to Detect DRive-By

DOWnloads, ACM.

Zhang, W., Y.X. Ding, Y. Tang and B. Zhao, 2011. Malicious web page detection based on on-line learning

algorithm, IEEE.

