A Text based Image Retrieval for Improving the Performance during Feature Extraction

3S. Vinoth Kumar and 2Dr. S. Karthik

1Research Scholar, Department of Computer Science and Engineering, Karpagam University, Coimbatore, TamilNadu, India.
2Professor and Dean, Department of Computer Science and Engineering, SNS College of Technology, Coimbatore, TamilNadu, India.

ARTICLE INFO
Article history:
Received 19 August 2014
Received in revised form 19 September 2014
Accepted 29 September 2014
Available online 6 November 2014

Keywords:
IBIR, Color Analysis, Image Retrieval, Data Mining, Feature Extraction.

ABSTRACT
Retrieval of image with text has been in practice for several years since when the retrieval of an image has been on the deck of every major crop. While the retrieval has been done based on the text provided with the image sometimes leaves no clue of what the picture actually looks like. Hence it is considered that data mining techniques along with the color analysis of the image and the retrieval based on the content of the image would be more than an effective process to make the feature extraction along with prediction of nearest neighbor and estimation algorithms recognizably builds the proposed system.

© 2014 AENSI Publisher All rights reserved.

To Cite This Article: S. Vinoth Kumar and Dr. S. Karthik, A Text based Image Retrieval for Improving the Performance during Feature Extraction. Aust. J. Basic & Appl. Sci., 8(17): 45-51, 2014

INTRODUCTION

The process of obtaining an image from a warehouse is said to be called as the image retrieval. While the intrusion of the diversity and the complexity increases, obtaining the exact image becomes a challenge. Earlier, the retrieval is based on the titles provided along with the images, which the humans can intervene the process to change the title that made the text based retrieval to be an ineffective task and there existed a void to provide the better image retrieval system.

Taking an advantage of these things, the Information based image recovery System (IBIR) was implemented. While looking into the race of the image retrieval, IBIR outperformed all other methods in extracting, mining, browsing, etc. It was all then the necessity of the extraction of vital information from the actual data proven needy and were keenly discussed to be more important. Although it is in the development phase, many problems faced are yet to be resolved. This ultimately caused the rapid growth in the sector crowding to a lean doorway.

To delegate the propaganda, we proposed the feature extraction with the information based image recovery system, capitalizing the difficulty with predicting nearest neighbor and clustering algorithm based on estimation. An impeccable flow system model, image clustering and neighborhood analysis topology are introduced to improve the efficiency and the accuracy. The remaining part is structured as the image retrieval theory in Section 2 along with extraction and analysis algorithms. Followed by the module with a description that we provided along with what is proposed in the paper in Section 3. Section 4 contains the experimentation results and other discussions. Section 5 discloses the future work and conclusions.

Related work:

This chapter introduces some necessary literatures review during this chapter. Initial come back to information based image recovery (IBIR). Before IBIR, the standard image retrieval is sometimes supported text. Text based mostly image retrieval has been mentioned over those years. The retrieval based on the text is simple to seek out some disadvantages such as:

- Manually annotation is usually concerned by human’s feeling, situation, etc. that directly leads to what's within the images and what's it concerning.
- Annotation is rarely complete.
- Language and culture distinction invariably cause issues, identical image is sometimes text out by many various methods.
- Mistakes like text error or spell distinction results in all totally different results.

Corresponding Author: S. Vincoth Kumar, Research Scholar, Department of Computer Science and Engineering, Karpagam University, Coimbatore, Tamil Nadu, India.
E-mail: svincothkumar397@gmail.com
In order to beat these drawbacks, content based mostly images retrieval (IBIR) was initially introduced by Kato in 1992. The term, IBIR, is widely used for retrieving desired images from an outsized assortment, which is predicated on extracting the options such as texture, shapes and color from pictures themselves. IBIR factual about the visual properties of image objects instead of matter annotation. And also the hottest and directly options is that the color feature, that is additionally applied during this paper. During this work, color is chosen as a primary feature in images clump.

A. Grouping of Data:
It is used to enhance up the process of retrieval and the ability to increase the accuracy in a large data warehouses. In Common, these clustering can be divided into two other types of algorithms: Hierarchic clump and non-hierarchic clump algorithms. But to the note of it, the hierarchic clump cannot clump massive quantities of data and the other is always advised to deal with this kind of massive data handling. The best method yet devised is so called as the estimation algorithm of the clusters.

This algorithm of clusters first illustrates the dimensions of the n clusters present and the feature which is extracted from the image itself, where the algorithm allocates those in the neighborhood of the image cluster. Unless there occurs any change in the feature points at every clump present, estimation will not stop allocation and calculation. The Paper is structured based on this process.

B. Extracting Features:
The primary step of the image retrieval has an issue with the import to deal with called as the feature extraction. The results will be directly obtained once all the properties of the picture are retrieved. During this process of retrieval, some amount of noise is usually generated and to avoid this, we require suitting the image to the best of itself. It also includes the removal of the background posture of the image such that a regular suite is usually clubbed. On doing this, there occurs a chance for some objects to be highlighted. However, in feature extraction, all these processes facilitate. Whenever an unusual image containing unusual features needs to be processed, it is required to choose the features which are needed to be extracted, and still why id comes back to options of the pictures such as:

B1 Color histograms:
These represent the elementary feature of the picture. Histogram is unremarkably used to obtain the uncertainties in the result. They can also be seen in various literatures for the basic picture comparison.

B2 Tamura Features:
Tamura planned six pictures options supported line-likeness, human visual image, directivity, contrast, roughness, coarseness and regularity. Those are typically thought of in several connected analysis.

B3 Shape Feature:
Besides color, Shape, also called forms, are the most typically used feature. Only a minimum number of the extraction methods require these illustrations of the forms to be different to scaling, rotation and translation. Two broad classifications can be seen in this forms representation, they are position-based and margin-based.

B4 MPEG-7 Features:
The moving picture experts group (MPEG) defines some description of visual named MPEG-7. It includes Color Layout, consistent Texture, Color Structure, Dominant Color, Camera Motion, and Ascending Color, Edge bar graph, Region-based form, Contour-based form, Texture Browsing, Motion Activity and constant Motion options.

C. Converse Context Histogram (CCH):
An image descriptor uses the references are intended to measure the inequalities in the feature points of the objects in the pictures. By comparing all the points of an object, the descriptors are derived effectively. This method efficiently is unacceptable to same object in the pictures. The method can be defined as follows,

\[H(pl) = M(pl) - M(plc) \] (1)

This histogram is devised with all the highs and the lows of the converse context between the objects of the pictures. The formula describes pc as the center, in the S*S region of pixel P and the histogram based contrast is calculated in this manner.

Then, each high and low are being calculated by the summation of the above histogram based contrast that belongs to the region of the pixel P and that lies in the value greater than zero as high and the value lesser than zero as low. To combine all together, we obtain the vital corner of the Converse context histogram descriptor as,

\[CCH(plc) = (HPl1^+, HPl1^-), (HPl2^+, HPl2^-), \ldots (HPln^+, HPln^-) \] (2)

This variant provides the exact converse context histogram points with the descriptors for each of the
cluster point in the pictures.

Proposed system:

In the proposed system, querying and understanding are the two basic amenities with the information based image recovery system. Understanding deals with the sample pictures being put over into the first block of the process as input and then they are suited to proceed for the retrieval of the properties of the pictures, for which the k-means clustering algorithm is used, as it is the simple process to evaluate the feature of the cluster.

The output from the first step is then segmented and the neighborhood grids are optimized for the better cluster arrangement in the pictures that are provided as the samples to the proposed system. Figure 1 reveals the architecture of the entire system.

![IBIR System Architecture](image)

Fig. 1: IBIR System Architecture.

There are four modules present in the architecture that applies to both of the stages, Grid and Segmentation, Clustering block, feature retrieval block, and the cluster in the neighborhood block. This can be best viewed in the following Figure 2.

![Architecture Modules](image)

Fig. 2: Architecture Modules.

A. Grid Segmentation:

The sample pictures that are put into the system are processed in this block. When there are pictures with larger size present, they tend to decrease the level of accuracy and hence they are sliced as smaller grids which would eventually help in the retrieval of the properties of the image and processing them.
The E*E grid is the first developed grid, followed by totaling the other sub category of the grids as T*T the totaled variable. They can be best viewed in the figure 3 as follows,

Fig. 3: Segmentation Sample.

B. Feature Retrieval:

The input pictures, as well as the coaching and question stage, are all processed during this module. It's additionally the most necessary in image retrieval. Since color is only the preferred and intuitive feature that supported on the human image, it's applied within the system. so as to induce additional powerful options, the CCH methodology is inclusively applied for extracting the vital feature purpose. The major two feature extractions are represented as below:

B1 Color Extraction:

Input pictures are going to be divided into E*T grids before this stage. All grids are input to extract the variety of color feature. First, the module figures out the common RGB counts of the E*E grids. Second, the inner T*T grids in each E*T grids also will be input to calculate the common RGB count. The T*T grids' detail RGB data is append once the E*T grids' color feature data. All those are ready for initial K-means clump. Figure 3 illustrates the color feature extractions of this stage.

B2 Converse Histogram Extraction:

The system utilizes CCH to seek out the necessary feature points. All the points are detected for getting ready the provided file of the neighborhood module and K-means clump or KNN classifying. The data of CCH feature points, as well as the 64 dimensions information, combines with the neighborhood module result. Taking it because the input for the second time of K-means clump, the K-means clump leads to fragment-based information, decision the Code book. Because the same implementation in question step, K-means is replaced by KNN formula. Question information inputted are going to be classified to boost the coaching code book, additionally correct classified result helps for quickly retrieval. Figure 4 shows the sample for CCH feature extraction

Fig. 4: Grid Sample and Color Extraction.

Fig. 4: Sample for Neighborhood Representation.
C. Neighborhood Cluster Module:
In this module, the provided file is from the CCH feature points. Feature points of each image can take into account as an index to create up the neighborhood table. Additionally the primary K-means clump results of each E*E grids are foreign to denote the worth of the neighborhood table. The steps of each detail are represented as follow:

- Input the CCH feature purpose Y of the X image, delineate as PICXY.
- Get the primary K-means clump result supported the CCH feature point’s coordinate.
- Get the neighborhoods’ initial K-means clump results.
- Appending the results from step3 according with the order left to right then prime to bottom. If there's no neighborhood, then the count are going to be “0” that stands for the aspect of the photographs.
- Appending the CCH data into the neighborhood table.
- Estimation clump supported the neighborhood table to get the code book.

Figure 4 shows the information presentation and process of the neighborhood module. Taking an equivalent format, the question step applies neighbor prediction formula rather than estimation.

D. Prediction Estimation Block:
Estimation clump is applied doubly in our system. The estimation clump helps generate the code book. So as to stay those input (include the coaching and question stage) being clustered within the same normal, our design keeps the cluster central points within the coaching stage. The central points are foreign into the K-means bunch within the question stage. Finally, the code book may be mapped within the same scrutiny customary.

Neighbor Prediction formula (NPF) is additionally concerned into our IBIR system. Supported the coaching result, NPF is applied for the question information pictures. NPF helps to classify the input data; additionally it fixes the code book which suggests the coaching result may be self-adapted.

E. Feature Retrieval Question Block:
This paper provides a question methodology supported modules mentioned before. Considering the feature points of CCH and the color and also the grid fragment points, all pictures input for question are going to be divided into items. Then NPF is applied to classify those pictures that maps to the coaching result (code book). The question grid pictures are compared with those image grids within the same cluster, the system then calculates the distinction supported the color feature. All fragments are labeled and joined with one grid within the code book. By calculate the foremost quantity of the grids, the IBIR finally output the question and retrieval result.

Implementation:
Based on the strategy provided with paper, the experiments are designed to verify the design of the IBIR system. Conjointly the experiments shows the modules projected with this article perform smart and well organized with the IBIR system design.

The proposed system used to classify the images to calculate the typical RGB, we've enforced and figure 5 shows samples of the color feature and split result.

Fig. 5: Example for Color Feature Result.

The color options extracted from X image divided into Y fragments is denoted as table 1 and image coaching clustered result's visualized as shown in the same.

The results show that identical color options of fragments are clustered along. Then the neighborhood module, CCH feature points are combined to be clustered to come up with the coaching result, known as the code book. They also show the visualization of the coaching results. The options extracted through CCH are classified along supported the color options.

In the code book, the color options and also the CCH options are enclosed. Supported the fragments, image will be retrieval well and also the clump helps decrease the computing price. This paper has verified many settings for projected IBIR system design. The results indicates the system perform well for coaching and querying.
Table 1: Color Feature Extraction.

<table>
<thead>
<tr>
<th>Representation for Image</th>
<th>Total Fragments</th>
<th>RGB</th>
<th>RGB Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2</td>
<td>[145,198,16]</td>
<td>[9,16,16]…[9,25,145]</td>
</tr>
<tr>
<td>0.5</td>
<td>3</td>
<td>[16,1,16]</td>
<td>[1,25,145]…[2,6,56]</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>[3,121,15]</td>
<td>[56,1,15]…[56,145,1]</td>
</tr>
</tbody>
</table>

In order to verify the IBIR system, the Wang’s information set which has 386*254 constituent pictures is applied because the testing and coaching data. The 1,000 pictures from the Wang’s dataset are unit applied into the codebook. Fifty pictures are at random elect as question pictures. With the CCH feature points, the IBIR system projected during this paper with success retrievals the right pictures for those question pictures. What is more, improved pictures are elect from 10,000 pictures because the coaching and querying pictures. The results indicate the IBIR system projected retrievals properly once it's well trained. Table a pair of shows the question sample of the Wang’s dataset.

![Fig. 6: Feature Extraction results of Wang set.](image1)

Several pictures are input for pictures retrieval. To question for similar pictures, the system operates as section three delineated. Table 3 shows the image retrieval results. The IBIR system projected during this paper with success resolve the photographs that are enclosed within the code book. For those that aren't within the code book, the similar footage is worked out.

Conjointly the retrieval processes that are generated by the grid module, the grid puzzle pictures. The experiment indicates that the IBIR system retrievals the easy-to-tell similar image, despite the fact that the image inputted for question isn’t trained within the codebook.

The results indicate the IBIR system projected retrievals properly once it's well trained. Table a pair of shows the question sample of the Wang’s dataset.

![Fig. 7: Results of Feature Extraction.](image2)
Conclusion:

The projected system is intended to control the content based mostly image retrieval system. It’s been verified with the photos of places of interest in Taiwan and also the Wang’s dataset. Our experimental results demonstrate that our IBIR system design not solely works well for image retrieval, however conjointly improves its exactitude.

In our information, this paper initially combines grid and segmentation, retrieving features block, estimation clump and cluster neighborhood block to create the IBIR system. What is more, the construct of neighborhood module that acknowledges the facet of each grids of image is 1st contributed during this paper. Applying the construct of fragment based code book into the content based image retrieval system conjointly contributes in our system design. The experimental results ensure that the projected IBIR system design attains higher answer for image retrieval. Our model represents the primary time during which mix new modules and techniques projected within the paper are integrated with IBIR system.

Images will be retrieval properly through the projected IBIR system. For those pictures that area unit contained within the code book, all of them will be searched because the most similar result. Conjointly for general pictures elect at random, the question results area unit the same as the input file. Since the IBIR system is predicated on the color feature, the retrieval results area unit directly and straightforward to inform the performances. within the future work, we have a tendency to hope to create a generalized question methodology that increase the system looking out ability and supply additional correct content descriptions of places of interest places by playing color feature analysis and CCH image extraction at the same time. As a result, the IBIR system is going to be able to counsel additional relevant annotations and descriptions.

Furthermore, we have a tendency to hope to optimize the system design and modules projected during this paper. There exists some detail setting will be mentioned and optimized with the photographs retrieval problems.

REFERENCES

