Heterogeneity of tree species communities along edge gradients in fragments of Araucaria Forest in Southern Brazil

1,2Pedro Higuchi, Ana Carolina da Silva, Tiássio Dresch Rech, Marco Antônio Bento, Fernando Buzzi-Junior, Bruna Salami, Tiago de Souza Ferreira, Francieli Pscheidt, Marcelo Negrini, Roni Djeison Ansolin, Marcelo Bonazza

1CNPq researcher fellowship
2Santa Catarina State University, Forestry Department, Av. Luiz de Camões, 2090 - Conta Dinheiro - Lages – SC - 88.520-000 - Brazil

A R T I C L E I N F O
Article history:
Received 8 August 2014
Received in revised form 12 September 2014
Accepted 25 September 2014
Available online 2 November 2014

Keywords:
Edge effects, forest fragments, subtropical forest, altitudinal gradients

A B S T R A C T
Background: Although the scientific literature includes abundant and diverse studies conducted in tropical regions, little is known about the influence of edges in subtropical forest fragments

Objective: This study aimed to evaluate the floristic-structural organization of tree communities along edge gradients in Araucaria Forest fragments in Southern Brazil.

Results: We observed a high floristic and structural heterogeneity among fragments. This heterogeneity is a result of the species turnover that occurs in the region. It was possible to detect the influence of edge gradients on tree community organization in two fragments.

Conclusion: We conclude that edge gradients can represent an important source of floristic-structural heterogeneity in Araucaria Forest fragments. However, the various response patterns observed for the tree communities indicate the complex nature of edge effects and suggest that the influence of edge gradients cannot be generalized for this forest formation.

INTRODUCTION

The Atlantic Araucaria Forest occurs in eastern South America in high-altitude areas of the subtropical region under a mesothermic and humid climate (Bertoncello et al., 2011). Although *Araucaria angustifolia* is the dominant species in the canopy, the understory shows a relatively high richness, with Myrtaceae as the most representative family, and a high floristic turnover among different areas in response to environmental gradients (e.g., altitude) (Higuchi et al., 2012; Silva et al., 2012). Part of this forest formation occurs as natural fragments inserted in a dominant grassland matrix, which is considered a relict vegetation type surviving from past glacial cycles (Behling et al., 2004). In fact, studies have demonstrated that the forest component initiated an ongoing intense expansion from the drainage network over the grassland ca. 1,000 years ago (Behling, 1997; Behling et al., 2004). However, due to the historical process of landscape occupation in recent centuries, characterized by the exploitation of timber and non-timber tree species and the expansion of agriculture and cattle-raising activities, the forest areas have been markedly reduced and the process of forest expansion inhibited. Nevertheless, there is evidence that the forest formations would tend to expand into the open areas in a hypothetical situation in which anthropogenic factors, such as cattle raising and human-caused fires, were absent (Behling and Pillar, 2007).

In this scenario of expansion and retraction of vegetation elements due to climate change and anthropogenic pressure, the understanding of the processes occurring in the interface between the forest and the non-forest matrix is of great interest for a better comprehension of the landscape dynamics and ecology. Thus, investigations of the ways in which vegetation changes along forest edge-interior gradients could contribute to this purpose. Commonly, a higher light incidence and air temperature and a more intense wind regime are observed in the edge than in the interior (Bierregaard Junior et al., 1992). As a consequence of these microclimatic differences, the floristic composition of forest fragments may be modified as a consequence of local extinctions of non-adapted species and the spread of light-demanding and pioneer species (Murcia, 1995; Laurance et al., 2006). The intensity of this process, described as the edge effect, varies primarily as a function of the proximity to the forest edge.
of the distance from the edge, the degree of environmental heterogeneity and the surrounding matrix (Kapos, 1989; Laurance et al., 2002). Although certain authors consider that edge effects can occur up to 400 m into the forest (Laurance et al., 2002), these effects are more intense in the first few meters (Rodrigues, 1998).

Although the scientific literature includes abundant and diverse studies conducted in tropical regions (Araújo and Espírito-Santo Filho, 2012; Santos-Filho et al., 2012; Guerra et al., 2013), little is known about the influence of edges in subtropical forest fragments such as the South American Atlantic Araucaria Forest (e.g. Baldissera and Ganade, 2005). Given that each vegetation physiognomy has fundamental differences in terms of species, ecological relationships, disturbance history and landscape dynamics over time, the influence of the edge on fragments cannot be generalized. Because of this specificity, research on seldom-studied forest formations is needed. Thus, to test the hypothesis of different patterns of arboreal response to edge effects in forest fragments, the present study aimed to evaluate the structure and the organization of the floristic composition of tree communities along edge-interior gradients in three Araucaria Forest fragments along an altitudinal gradient in Southern Brazil.

MATERIALS AND METHODS

This study was conducted in three Araucaria Forest remnants located along an altitudinal gradient in Santa Catarina State, Southern Brazil, at 950 m (27°44′16″S; 50°34′51″W, area = 281 ha), 1,050 m (27°51′15″S; 50°09′58″W; area = 153 ha) and 1,300 m (28°20′13″S; 49°37′29″W, area = 252 ha). The regional climate is Cfb according to the Koppen classification (Pandolfo et al., 2002), and the topography is characterized as gentle-undulate and undulate terrain. All fragments are located in the same hydrographic basin, are inserted in a grassland matrix disturbed by anthropogenic factors, such as cattle raising and agriculture, had the same past disturbance history (selective logging) and are in an advanced successional phase.

Five 20x100 m transects, separated by at least 100 m to incorporate environmental variation, were allocated per fragment and placed perpendicular to the edges, totaling 3 ha of sampling area. The transects were subdivided into 10 10x20 m subplots within which all living trees with a diameter at breast height (dbh) greater than or equal to 5 cm were measured (circumference at breast height –cbh) with a metric tape and identified. The species were classified in botanical families according to the APG III system (Angiosperm Phylogeny Group, 2009).

The community structure was described by importance values (IVs), which synthesize the relative values of density, dominance and frequency (Mueller-Dombois and Ellenberg, 1974). The data (tree species abundance in each subplot) were ordinated by non-metric multidimensional scaling (NMDS) (Minchin, 1987). The suitability of ordinations for interpretation was assessed with stress (Standard Residuals Sum of Squares) values. The floristic-structural differences among the fragments were verified with a non-parametric multivariate analysis of variance (NPMANOVA). The influence of the distance from the edge on the floristic-structural organization of each fragment was evaluated with generalized additive models of the ordinations with thin plate splines smoothing using the “ordisurf” function of the “vegan” package (Oksanen et al., 2013) of the R statistical programming language. All analyses were conducted with R (R Development Core Team, 2013).

RESULTS

The distribution of plots in the ordination analysis (Stress = 0.19) (Figure 1) indicated structural differences and elevated tree species turnover among the fragments, as confirmed by a NPMANOVA (p = 0.001). From the low- to the high-altitude areas, a total of 1,536, 1,516 and 1,457 individuals, belonging to 83, 67 and 55 species, respectively, were sampled. In the three areas, the richest families were Myrtaceae (25), Asteraceae (10) and Lauraceae (6). In the lower-altitude fragment (950 m), the basal area was 33.78 m².ha⁻¹, with Matayba elaeagnoides Radlk (17.61%), Lithraea brasiliensis Marchand (5.32%) and Araucaria angustifolia (Bertol.) Kuntze (4.88%) as the species with the highest importance values (IV). The richest families and genera were, respectively, (17 species) Asteraceae (7) and Lauraceae (5), and Myrceugenia (3), Myrceugenia (3) and Solanum (3). In the middle-altitude fragment (1,050 m), a basal area of 36.11 m².ha⁻¹ was observed, with Araucaria angustifolia (13.79%), Lithraea brasiliensis (5.63%) and Podocarpus lambertii Klotzsch ex Endl. (5.38%) as the most important species (IV). The richest families were Myrtaceae (15) and Salicaceae (5); Eugenia (4), Myrca (4), Ilex (4) and Myrsine (3) were the richest genera. In the fragment at the highest altitude (1,300 m), a basal area of 44.49 m².ha⁻¹ was found. Dicksonia sellowiana Hook. (13.22%), Lithraea brasiliensis (9.11%) and Araucaria angustifolia (8.98%) were the most important species. The richest families were Myrtaceae (10), Asteraceae (5), Anacardiaceae (4) and Lauraceae (4), and the richest genera were Myrceugenia (4) and Schinus (3).
Fig. 1: Plot ordination, obtained with a NMDS analysis, of Araucaria Forest fragments located at different altitudes levels in Southern Brazil.

Although no influence of edge distance on tree community organization was observed in the highest-altitude fragment (1,300 m), the edge gradient significantly explained (p < 0.02) part of the variation in the tree component in the lower-altitude fragments at 950 and 1050 m, 31.6 and 33.2%, respectively (Figure 2). The fitted models showed no linear relationship between the ordination axis and edge distance. In the fragment at 950 m, *Baccharis semiserrata* DC. (*Baccsemi*) and *Baccharis uncinella* DC. (*Baccunci*), typical short-lived pioneer species, occurred close to the edge (<20 m), whereas *Sloanea monosperma* Vell. (*Sloamono*) and *Picramnia parvifolia* Engl. (*Picprav*), which are more shade tolerant, occurred at a distance of >65 m. In the fragment at 1,050 m, *Xylosma tweediana* (Clos) Eichler (*Xylotwee*), *Symlocos uniflora* (Pohl) Benth. (*Sympunif*), *Symlocos tetrandra* (Mart.) Miq. (*Symptetr*) and *Blepharocalyx salicifolius* (Kunth) O.Berg (*Blepsali*), light-demanding species, occurred close to the edge (<35 m), and *Eugenia uruguayensis* Cambess., (*Eugeurug*) shade-tolerant, and *Sebastiania commersoniana* (Baill.) L.B.Sm. & Downs (*Sebamod*), light-demanding, occurred at a distance of >70 m.
Fig. 2: Edge distance fitted by generalized additive model to NMDS ordinations, with values of significance (p) and explained variation (VE) for Araucaria Forest fragments along an altitudinal gradient [950 m (A), 1,050 m (B) and 1,300 m (C)] in Southern Brazil

DISCUSSION

Although several similarities were evident, such as the richest family (Myrtaceae) and the presence of *Araucaria angustifolia* and *Lithraea brasiliensis* among the most important species, the three fragments showed a high floristic and structural heterogeneity, demonstrated by the variation in families and genera richness and the relative importance of the most important species. This result indicates an increased turnover of tree species at the regional scale, as expected because the fragments were located at different altitudes. In different forest formations, tree species turnover along an altitudinal gradient is a common pattern (e.g., Gentry, 1998; Lieberman et al., 1996; Oliveira-Filho and Fontes, 2000; Homeier et al., 2010) and can be explained by climatic (e.g., temperature and fog) and edaphic changes along the gradient.

At the local scale, the edges were confirmed as an important source of floristic-structural heterogeneity for the lower-altitude fragments. This result suggests that biotic and abiotic variation may occur even in a short
distance (<100 m) along an edge gradient (Murcia, 1995; Baldissera and Ganade, 2005), changing the pattern of tree species dynamics (Laurance et al., 1998; Oliveira-Filho et al., 2007) and resulting in the establishment of different species along the edge gradient. Furthermore, variation in tree species among plots at the same distance from the edge was observed, indicating the complex nature of the edge effect on tree species communities (Mesquita et al., 1999; Laurance et al., 2007).

CONCLUSION

We conclude that at the regional scale, the studied fragments showed high floristic-structural heterogeneity, indicating high beta diversity, and that at the local scale, edge gradients may represent an important source of floristic and structural variation in Araucaria Forest fragments. However, the varied patterns of tree species community response indicate the complex nature of the edge effect and suggest that its influence should not be generalized for subtropical Araucaria Forests.

ACKNOWLEDGEMENT

The authors thank the Brazilian National Council for Scientific and Technological Development (CNPq), for financial support (Grant MCT/CNPq 14/2010, 475095/2010-3).

REFERENCES

