INTRODUCTION

Global warming is one of the environmental issues since 1958. Nowadays it becomes more serious since rapidly increasing of emissions from diesel fuel in transportation and manufacturing sectors (Amir Khalid et al., 2011). Basically, the global warming is referring to an increase of temperature of earth surface and it creates green house effect to an environment (K. Hanjo, 1996). The transportation emissions especially from diesel engine can contribute direct warming impact such as carbon dioxide (CO2) and indirect impact such as nitrogen oxides (NOx), production, and economy (M.F. Seis et al., 2014). One of the solutions that can be proposed to overcome this crisis is by using biodiesel fuel (BDF) as alternative fuel in both sectors (M.F. Seis et al., 2014).

Although the BDF can be

An alternative fuel to reduce a usage of diesel fuel, the BDF also had a disadvantage due to low quality of fuel and decreased the performance of vehicle or machines compared to diesel fuel (M. Nazri, 2011). Another issue in BDF is high toxic emission such as NOx and soot. In order to decrease the emission to the environment, a water-fuel emulsion was introduced by using an injector. The injector can combine the water-fuel emulsion and air by using suitable ratio in mixing chamber for combustion process.

Various studies on emulsion fuels reveal that they have various benefits, including improvement in combustion efficiency and a reduction in particulate matter (PM) and nitrogen oxide (NOx) emissions. Some of the researcher was discussed a variable on fuel properties of two and three phase biodiesel emulsions (Cherrng-Yuan Lin, 2007). The results showed that the burning of neat biodiesel produces the least amount of carbon...
residue. In addition, the existence of water content causes an increase in specific gravity and kinematic viscosity of the biodiesel emulsion. Y. Kidoguci et al. (2011) introduced an external premix injector in burner system for rapid mixing. The premix injector involves diesel fuel, water, and air with the different percentage of fraction. Fuel water emulsion is an emulsion of water in the base doped diesel fuel (here used BDF). It consists of water mixed with certain chemical, including surfactants and BDF. Burning emulsion has been widely accepted as an effective method to reduce NOx and particulate matter (PM) in BDF exhaust gas emissions (A. Lif et al., 2006). The use of emulsions of water also improves the efficiency of combustion. Besides that, it has been shown in many previous studies where the emulsion can reduces the flame temperature thus reducing NOx emissions. The water also improves atomization and mixing caused by the micro emulsion droplets. This is due to the increased momentum jet fuel vaporized give more air to get into the jet fuel (C. D. Bolszo et al., 2010).

Premix Injector:

Premix injector is a device for mixing fuel with air in an internal combustion engine. It has become the primary fuel delivery system used in automotive petrol engines. The injection process in a diesel based engine can be studied experimentally or by means of simulation work. The initial design of injector is only for fuel-air mixing. Although this design has an advantages in completing combustion in the nozzle chamber, the disadvantages is the combustion were proposed to an unhealthy emission for environment. To overcome the problem, a new design was introduced which is consist of air, fuel and water. Figure 1 (a) shown the concept of injector for this simulation and the design concept it was introduced by Y. Kidoguci etc. (2011). For the simulation work, the model was developed and a combustion chamber was added as additional domain for simulation work. The combustion chamber added since the characteristic of the premix injector will study based on mixing results in the combustion chamber.

In order to study the characteristics of the premix injector, an external spray pattern using the premix injector will be carried out in this research. Besides that, the scope that will be study here are the mixing of BDF with three compositions of water which is 0% water, 10% water and 20% water. The parameter that will be look further is the velocity in the combustion chamber for each fluid, the pressure occur in the combustion chamber and spray pattern for different configuration of the BDF-air-water. During the simulation work, Reynolds number will set at a 4.5×10^5 and the ambient temperature is $25^\circ C$ with density of air, $\rho = 1.184 \text{ kg/m}^3$.

Fig. 1: (a) Design concept of premix injector (b) Components of premix injector with spray chamber

Simulation Work:

The simulation work done by using commercial CFD software package ANSYS CFX. An unstructured mesh was adopted for the spatial discretization of the domain, ensuring a better refinement in regions where higher gradients were expected. The model and meshed model were shown in Figure 1. The meshing was meshed in three types which are geometry mesh, connection mesh, and default mesh. For geometry mesh, its divide the solid bodies for premix injector at 11 bodies. The connection mesh is setup between head of mixing chamber and spray chamber and sweep mesh was setup for default mesh. For the mesh, the number of nodes and elements are 81280 and 409449 respectively. The turbulent at all boundaries condition has been set to 2% and back flow turbulent intensity at all boundaries has been set to 5%. The Semi-Implicit Method for Pressure Linked Equation (SIMPLE) method is used to reach a convergent solution set (H.K. Versteeg, 2007). The accuracy of using computational fluid dynamics as a tool for the prediction of flow features depend on the choice of the turbulence model. The standard k-ε model is the most common turbulence model and it is routinely used for general analysis.
The boundary condition needed to set up before solver. Every inlets, outlet, body and symmetry will be defined in this stage. Pressure, velocity, and turbulent method should be considered in these boundary conditions. The boundary conditions have been selected based in the premix injector specifications. The boundary condition for W0 BDF type was shown in Table 2. The outlet set up as the opening zero Pascal for the flow domain. The walls are set to no slip boundary condition.

Table 2: Boundary Condition for inlet, opening, and walls.

<table>
<thead>
<tr>
<th>Boundary Condition</th>
<th>Analysis Type</th>
<th>Steady State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inlet</td>
<td>Flow Regime</td>
</tr>
<tr>
<td></td>
<td>Air</td>
<td>Subsonic</td>
</tr>
<tr>
<td></td>
<td>BDF (W0)</td>
<td>Mass Dan Momentum</td>
</tr>
<tr>
<td></td>
<td>Opening</td>
<td>Flow Regime</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mass Dan Momentum</td>
</tr>
<tr>
<td></td>
<td>Wall</td>
<td>Wall Roughness</td>
</tr>
<tr>
<td></td>
<td>Turbulent</td>
<td>K-Epsilon</td>
</tr>
</tbody>
</table>

RESULT AND DISCUSSION

For the premix injector simulation, there are three things that interest to discuss here which is the velocity of each fluid, pressure occurred in the mixing chamber and also the spray pattern. As mentioned before, there are three compositions of water used in the emulsion here which are without water (0% of water), 10% of water and 20% of water. Figure 3 showed the pressure occurred in the combustion chamber during the simulation. As can see in the figure, high percentage of water used gives the highest pressure in the combustion chamber.

Fig. 3: Pressure occurred in mixing chamber for different composition of water.

As the pressure is inversely proportional to the velocity, the result of the velocity for each fluid (air and BDF) in the combustion chamber was shown in Figure 4 and 5. From the figure, it clearly showed that the
pattern of velocity is nearly similar except the velocity for the BDF is higher compared to the velocity of the air. The velocity of the fluids here decrease at the 15mm in the combustion chamber due to orifice effect form the injector. The result is very important since the velocity of both fluids give a view on what is the weak of the injector system here. In order to create a better mixing, hence improve the performance of the injector, the velocity for both fluids need to be control so that the different not so high. As mentioned earlier, this is an initial work to test the capability of the premix injector for BFD-air-water mixing in open burner system. These results also represent an initial data that hopefully can be use for further investigation in premix injector for BFD-air-water mixing in open burner system.

![Fig. 4: Velocity of air in the mixing chamber for different composition of water.](image)

![Fig. 5: Velocity of BDF in the mixing chamber for different composition of water.](image)

Figure 6 represent the contour of velocity of BDF in the combustion chamber. Besides that, from the contour also we can see the spray pattern for the different composition of water added into the injector. For the spray pattern, a volume fraction for each type of BDF gives different of fluid flow pattern in the premix injector. The presence of water can affect the shape of spray pattern because of the large value of water which is 1000kg/m³. From the figure, it showed that the spray pattern occurred are in the form of hollow cone. Each combination of BDF-water gives a different spray angle and penetration due to the water content.

For the velocity of each BDF studied here, the figure clearly showed that the BDF without water give the higher velocity. It is followed by the BDF with 10% of water and the lowest velocity occurred in the combustion chamber is for the BDF with 20% of water. In this study, as the BDF with 0% water will become as a benchmark for other two BDF, the contour showed that the BDF with 10% water give a nearly similar results with the benchmark, it can be conclude that the method to add the water to the injector did not give much effect to the performance of the injector. However, it will give an effect if the amount of water is increase.
Fig. 6: Velocity contour of BDF for different composition of water.

Conclusion:

The flow mixing in premix injector was investigated to evaluate characteristic of the injector. From the simulation, high pressure occurred in the combustion chamber for the BDF that contain high percentage of water while for the velocity, the composition with the lowest percentage of water give higher velocity in the combustion chamber. For the spray pattern also give a good results where the different spray were occurred for the different composition of water in BDF for the mixing. Last but not least, we noted here that this is only initial work to test the capability of the premix injector for BFD-air-water mixing in open burner system. These results also represent an initial data that hopefully can be use for further investigation in premix injector for BFD-air-water mixing in open burner system.

ACKNOWLEDGEMENT

The author is grateful to the Universiti Tun Hussein Onn Malaysia (UTHM) and Ministry of Higher Education (MOHE), Malaysia for supporting this research under the MTUN-CoE research grant, vote C010.

REFERENCES

