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 In this article, transformation involving the use of an integrating factor before applying 

the symmetric discretization is given for two point boundary value problems. The 
extrapolations of linear BVPs using an integrating factor are found to have much better 

accuracy than those applied without the integrating factor. Results of numerical 

experiments are presented which shows the effect of the integrating factor in improving 

the accuracy of extrapolation.  
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INTRODUCTION 

 

Extrapolation has always been an important technique for accelerating the convergence of solutions arising 

from discretization methods. It has been successfully applied to numerical quadrature (Romberg, 1955) and the 

solution of ODEs. Applications of extrapolation to ordinary differential equations (ODEs) became popular when 

Gragg (1965) proved the existence of an asymptotic error expansion for the explicit midpoint rule. Gragg also 

introduced a smoothing formula to dampen the effects of the parasitic component in the numerical solution. This 

smoothing formula has been successfully used by Bulirsch and Stoer (1966) in the numerical solution of nonstiff 

problems.  Following this success, Lindberg (1971) and Bader and Deuflhard (1983) extended the application of 

extrapolation to stiff problems. 

On the other hand, applications of extrapolations applied to boundary value problems (BVPs) are given by 

Fox in 1957. He investigated the deferred approach for the various boundary value problems using second order 

central difference formula. Laurent (1963, 1964) then solved the boundary value problems (BVPs) in ODEs 

using iterative shooting methods and also PDE problem using central differences.  Meanwhile Stetter (1965) 

extended Gragg's theory for solving integral equation, PDEs and BVPs in ODEs while Keller (1969) had used 

central difference method to solve the linear ODEs and parabolic PDEs and showed that extrapolation can 

obtained high order accuracy approximations. There are also recent papers on solving PDEs  using extrapolation 

technique (Dai, 2014) and (Liu, 2013). 

Although the idea of extrapolation is old, extrapolation technique has shown to be a powerful tool in 

improving the accuracy of numerical solutions especially when solving symmetric methods (Gorgey, 2012). 

This is because each successive extrapolation increases the order by two instead of one at a time. For example, 

an order-2 discretization will give order 4 for the first extrapolation and order 6 for the second extrapolation.  

In this article, symmetric discretization for both the first and second derivative is given. However, instead 

of using a symmetric discretization for y directly using the central difference method, a transformation 

involving the use of an integrating factor before applying the symmetric discretization is done. 

 

Boundary Value Problems: 

 

A two point boundary value problems (BVPs) has the form 
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Consider linear problems of the form 
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where p, q and f are functions of x. The boundary conditions are given in (2). Equation (3) is assumed to 

have a unique solution that is at least twice continuously differentiable. 

 

One simple approach to solve equation (3) is numerically by employing finite difference scheme.  

 

Solution By Finite Difference Scheme: 

The numerical procedure using finite difference approach is done by dividing the interval [0,1] to n+1 sub-

intervals of equal length h where h is the also the grid spacing. The grid points are denoted by ix while the 

boundary points are 0x and .1nx  Approximating the second derivative y   by finite differences at the points 

ix gives the order-2 discretization as follows: 
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For the first derivative y  , it is approximated using the central difference approximation 
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Now, substituting into equation (3) and denoting )(),( iiii xppxqq  and ),( ii xff  gives 
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Equation (5) can be written more precisely as 
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Equation (6) then forms a system of n linear equations in the n unknowns nyy ,,1  . In a matrix form, it can 

be written as 
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Now the above finite difference approach is not something new. However, instead of using finite difference 

scheme, equation (3) can also be solved using integrating factor technique which is discussed in the next topic. 

 

Solution By Integrating Factor Technique: 

Most mathematicians are familiar with the solution of the first order ODEs using the integrating factor 

technique. However, it is also possible to solve equation (3) using this technique. The idea is to discretize the 

first derivative until the equation does not contain any first derivative. Step by step transformations using 

integrating factor are given below: 
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Step 1: 

Define an integrating factor 
dxxp

exJ
)(

)( . Equation (3) becomes 
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Step 2: 

Discretize the derivative using the symmetric order-2 formula over a half step. 
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Step 3: 

Discretize the derivative y   again using the symmetric order-2 formula over a half step. 
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Step 4: 

For simplicity, let iiiii qJhJJD 2
2/12/1   . By doing so, the equation in Step 3 also give a tridiagonal 

system in the following matrix form. 

 

 

 

 

 

 

 

 

 

 

The above procedure can also be carried out for higher order discretization. In this article, the numerical 

results are given for order-2 discretization with and without integrating factor. In addition to this approach, since 

the method is symmetric, extrapolation will take advantage. Symmetric in the sense of Stetter (1973) also means 

it has a global discretization error with an asymptotic expansion containing even powers of h. This special 

property gave extra benefits to extrapolation method because each successive extrapolation increases the order 

by 2 at a time. For detailed explanations on extrapolation of ODEs and symmetric methods, one may refer to 

(Chan & Gorgey, 2013) and (Gorgey, 2012). Hence, the numerical results are also given for extrapolated order-

2 discretization with and without integrating factor. The next topic gives the numerical experiments for three 

types of boundary value problems are the following observations are made. 

 

Numerical Results And Discussion: 

 The numerical results are given for two types of boundary value problems. In all cases, the exact solutions 

are known therefore the graphs of error versus the grid points are given. To check the accuracy of the 

extrapolation, the graphs of error versus the grid spacing h are also given.  

 

Problem 1: 
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Problem 1 shows that extrapolation gives better accuracy when is used for the integrating factor (IF) 

technique instead of the second order difference formula. The results are given in Figure 1, Figure 2 and Figure 

3. 
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Fig. 1: Problem 1 with and without integrating factor technique. 

 

Figure 1 shows the behavior diagram of Problem 1 with and without integrating factor. The result shows 

that the errors are smaller when solved using integrating factor instead of second order approximations. 

 

 
Fig. 2: Problem 1 with and without integrating factor/extrapolation technique. 

 

Figure 2 shows the behavior diagram of Problem 1 with and without integrating factor and extrapolation. 

According to Figure 2, the errors are smaller when solving using integrating factor technique together with 

extrapolation if compared the solution without integrating factor and extrapolation.  
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Fig. 3: Accuracy diagram of Problem 1with and without integrating factor/extrapolation technique. 

 

Figure 3 shows the accuracy diagram of Problem 1 with and without integrating factor and extrapolation. In 

Figure 3, it is shown that by the slope of the graph, the order of the first level extrapolation is 4 while the order 

of the second level extrapolation is 6.  The second level extrapolation with integrating factor is more accurate 

than the second level extrapolation without integrating factor. 
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Problem 2 is given by (L, Fox, 1962). This is an interesting problem where according to Fox extrapolation 

will fail if used with central difference method however with integrating factor, extrapolation is shown to work 

efficiently.  

 

 
Fig. 4: Problem 2 with and without integrating factor technique. 
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Fig. 5: Problem 2 with and without integrating factor/extrapolation technique. 

 

Figure 4 and 5 show the behavior diagrams of Problem 2 with and without integrating factor and integrating 

factor with extrapolation. Figure 5 shows an interesting results where although extrapolation fails when solved 

using second order approximations which is true according to Fox, however, extrapolation works well when 

solved using integrating factor. This is indeed one new observation.  

 

 
 

Fig. 6: Accuracy diagram of Problem 2 with and without integrating factor/extrapolation technique. 

 

Similar observation is shown in Figure 6 where the solutions fail when solved with extrapolation using 

second order approximations. On the other hand, extrapolation works well when solved using integrating factor. 

The slope of the graph gives the first and second level extrapolations of the integrating technique are of order-4 

and order-6 respectively. 

 

Conclusions: 

From the numerical experiments it is therefore shown that solving y   using IF technique have much better 

accuracy than those solved using the second order central difference formula. In addition to that, extrapolation 

with integrating factor is more efficient for BVP. Interestingly extrapolation fails for the problem 
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0 xyyx  when solved using the second order difference formula but works well for the IF technique.  

Therefore, it can be concluded that integrating factor technique with extrapolation preserve the asymptotic errors 

expansions of the solutions and therefore gives efficient results. It is therefore interesting to try on various BVPs 

as well as PDEs and see whether similar observations can be obtained.  
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