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 Background: The recent developments of power electronic based non linear loads 

introduce more harmonic pollution in power system. The harmonic distortion can cause 

increased losses in the equipment used in distribution system and interference with 
communication systems. Objective: The aim of the paper is to measure the harmonic 

distortion with reduced computational time. The harmonic distortion monitoring is one 

among the most important processes in active filter design for harmonic reduction. 
Wavelet Neural Networks (WNNs) has been recently proposed for the effective 

harmonic distortion measurement with complete accuracy and precision. The WNN is a 

new kind of neural networks, which combine Feed Forward Neural Network (FFNN) 
with wavelet theory. WNN also has a higher ability of generalization and fast 

convergence for learning than FFNN. In this research, the Morlet wavelet has been 
chosen for activation function in the hidden layer of the network. Results: The results of 

this proposed method are compared with the conventional Feed Forward Back 

Propagation Network (FFBPN), and it clearly shows its supremacy in better prediction 
by accurate discrimination, fast learning, fine adaptability and lesser processing time. 

Conclusion: The proposed method has been proved that the improved estimation 

accuracy and low computational time, which makes it suitable for real time application 
in power quality metering equipment. 
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INTRODUCTION 

 

 The extensive use of nonlinear loads based on power electronic controlled equipment, such as variable 

speed drives, automated production lines, personal computers and non linear electronic devices in power 

systems has contribute current and voltage waveform distortion. Harmonic disturbances come generally from 

equipment with nonlinear load characteristics, which inevitably change the sinusoidal nature of the AC current, 

resulting in the flow of the harmonic current in the power system. The major adverse effects are equipment 

heating, increased losses, loss of life, and overloading of neutrals (G.K. Singh, 2009). The total harmonic 

distortion is the main parameter, which is used for harmonic distortion measurement. The THD is a measure of 

the effective value of the harmonic components of a distorted waveform. This index can be calculated for either 

voltage or current. Fast Fourier transform (FFT) is the conventional method followed for measuring the defined 

indices began to be considered. It has been reported that the accuracy of FFT measurement is only depends on 

the power system frequency variations. The FFT has certain drawbacks for the harmonic analysis of a signal 

such as spectral leakage and the picket fence effect may lead to inaccurate signal measurement  

  In recent works, Artificial Neural Network (ANN) is the alternative methods to FFT analysis, which is 

applied to harmonic content determination in three-phase systems and also in single-phase systems (D.O. 

Abdeslam et al., 2007; C.F. Nascimento et al., 2013). The ANN based techniques are able to comprise 

nonlinearity in the system and are immune to noise present in the signal, they often settle in local minima or 

slow convergence due to their multilayered structure (C.I. Chen et al., 2010; C.I. Chen, et al. 2012, G.W. Chang 

et al., 2010). To solve these defects, wavelet theory is combined with the advantages of ANN and form a 

wavelet neural network. WNN has been accepted as a novel universal tool and successfully applied in wider 
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applications such as functional approximation (Q. Zhang and A Benveniste, 1992; G.G. Zhang et al., 1995) and 

nonlinear system identification (S. A. Billings and H. L. Wei, 2005 ).  

 This work proposes an adaptive wavelet neural network for harmonic content measurement in three phase 

power systems. For this neural network, Morlet wavelet (Z. Bashir and E.I. Hawary, 2000; Z. Zainuddin and O. 

Pauline, 2011) has been selected as wavelons. The learning ability of the proposed method provides faster and 

accurate estimates with less number of computations. 

 The rest of the paper is structured as follows. Section 2.0 depicts the problem of harmonic distortion 

measurement for three phase supply systems. The performance of the proposed scheme is demonstrated with the 

simulated model in section 3.0.  Section 4.0 presents the results and discussions of the work. Finally, section 5.0 

summarizes the conclusion.  

  

2.0 Problem Formulation: 

 The proposed method is applied in the test circuit to measure the harmonic distortion for determining the 

compensation characteristics of active power filter 

 
Table 1: Test circuit parameters.   

Items Name of the load Specifications 

Load 1 Thyristor D.C Drive 5 HP, 500 V, 1750 RPM, Field 300 V 

Load 2 Thyristor D.C Drive 20 HP,500 V, 1750 RPM, Field 300 V 

Load 3 Nonlinear load (converter with resistive load) 1500 ohms 

Load 4 Induction motor 5.4 HP,400 V,50 Hz, 1430 RPM 

Load 5 Induction motor 10 HP,400 V,50 Hz, 1430 RPM 

 

 The performance of the MWNN is demonstrated with the help of a simple three phase test circuit is shown 

in Fig. 1. The test circuit consists of three non linear loads (two DC drives and one converter with resistive load) 

and two linear loads (two induction motors) are fed by a purely sinusoidal power supply.  Table 1 shows the 

details of the connected loads with a 400 V, 50 Hz, 3 phase AC source. 

 

 
Fig. 1: Simulation circuit. 

 

 The time domain representation of current waveform in supply side is shown in Fig. 2 and Fig. 2(a) 

represents the frequency spectrum of Fig. 2. 

 

 
Fig. 2:  Source side current waveform. 

 

 
Fig.  2(a): FFT spectrum of Fig, 2. 

 

2.1 Total harmonic distortion (THD): 

 The Total harmonic distortion (THD) is a significant index commonly used to measure the harmonic 

content of a waveform with a single number (Francisco C. De La Rosa, 2006, Doron Shmilovitz, 2005). THD 
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can be considered for the contribution of every individual harmonic component on the distorted signal. The 

THD value can be calculated for either voltage or current signals, respectively, as follows: 
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3.0 Wavelet Neural Networks:  

3.1 Architecture of Morlet wavelet neural network:  

 Morlet wavelet neural network is a multilayer feed forward neural network having hidden layer neurons 

with morlet wavelet function as an activation function instead of sigmoid activation function. It is an alternative 

approach to the feed forward neural networks for approximating functions. Fig. 3 shows the morlet wavelet 

function. The MWNN employed in this work are designed as a three layer configuration with an input layer, 

central hidden layer (wavelet layer) and output layer.  
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Fig. 3: Morlet wavelet. 

 

 Figure 4 shows the typical structural design of an MWNN. The input layer receives the input variable x = 

[x1, x2, . . ., xn], where ‘n’ is the number of dimensions and conveys the accepted input to the hidden layer. The 

neurons in the hidden layer can also be called as wavelons, which constitutes wavelet function. The 

approximation of the target values are estimated in the output layer. The direct weighted connection helps to 

achieve input to output mapping. Due to the simple explicit expression, Morlet wavelet has been considered in 

most of the WNNs. (Z. Bashir and E.I. Hawary, 2000) 
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Fig. 4: Typical architecture of a MWNN. 

 

3.2. Training of MWNN: 

 The process of adjusting the weights in the links between the network layers with the objective of achieving 

the expected output is called training a network. The efficient training depends on the suitable initialization of 

the network. The learning is the internal process that takes place when a network is trained. Furthermore, 

training is done to enable the update of the parameters used in the network. In this work, the standard gradient 

decent based back propagation algorithm is used due to its simplicity and the ability to update each parameter 

simultaneously.  Adaptive learning rate is used in the training for faster learning process. The training objective 

function of an adaptive wavelet neural network is derived from the instantaneous total mean square error can be 

expressed as 
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 Where yk’ and yk are the desired and actual output of the k
th

 output neuron of the network, respectively. 

Whereas, k is the number of output neurons. The minimization of the above function is carried out during 

training of the proposed network. 

 The MWNN parameters are updated at each iteration using the following generalized expression. 
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 Where m is the iteration count, αβ and ηβ represent the momentum coefficient and the learning rate. Here, β 

represents a free parameter (w, v, b, λ or δ).  

      The free parameters are updated and the output of the MWNN for k
th

 pattern can be computed using the 

following equation (N. M. Pindoriya et al., 2008) 
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 Where w and v represent the weights of the links connected between the input and output layers and 

weights of the links connected between the wavelet layers and output layers. ψq is the output of the q
th

 hidden 

neuron and bk is the bias of the k
th

 output neuron. 

 

3.3 Initialization of network parameters: 

  The effective training process of the network depends on the suitable initialization of the free parameters. 

The appropriate parameter initialization would result to less iteration in the training phase of the network. The 

network initialization signifies the selection of initial parameter values of the WNN parameters, learning rate, 

number of hidden units, weights and bias are initialized randomly within the constraints. The minimum number 

of wavelons is implemented in the network such that it does not affect both the computational burden and the 

output accuracy. A moderate value of learning rate and momentum coefficient are chosen initially to enhance 

convergence speed and the numerical stability of the learning phase. 

 
Table 2: Training parameter values of the MWNN. 

Network Parameters 

Number of wavelons 3 

Wavelet function Morlet 

Training Parameters 

Learning rate for translation ηλ 0.2 

Learning rate for dilation ηδ 0.2 

Learning rate for IO weights ηw 0.01 

Learning rate for HO weights ηv 0.4 

Learning rate for bias ηb 0.01 

Threshold cost function value εth 0.005 

 

 A compromised value of threshold εth is chosen based on the minimum desired accuracy. Table 2 provides 
the training parameter values of the MWNN. In this work, the configuration of the BPN and MWNN uses 99 
input neurons (only a half cycle of the distorted signal) and the network produces one output neuron that 
represents the current harmonic distortion level in the supply side. From the results, it is to be noted that the 
current harmonic distortions are easily estimated without disconnecting any loads from the power system. The 
results obtained were compared with the back propagation neural network. 
 

RESULTS AND DISCUSSIONS: 
 
 The performance of the proposed technique for harmonic distortion measurement can be confirmed by 
using target and estimated THD values. Fig. 5 shows the measured current waveform in the supply side. Fig. 
5(a) represents the frequency spectrum of Fig. 5 .  
 

 
 
Fig. 5:  Source side current waveform. 
 
 From Fig. 5(a), it is to be noted that the total harmonic distortion in supply side is 77.37% in phase A. 
however the target THD is  77.37 %, BPN estimates 76.5968 % and the proposed MWNN method estimates 
77.3626 %. The error value also calculated between the actual THD value and its estimated THD values. The 
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calculated error values of BPN and MWNN are 0.7732 and 0.0074. Therefore, the proposed morlet wavelet with 
ANN method is also capable to predict the system performance correctly, validating its accuracy. Table 3 shows 
the comparison of THD values and its corresponding error values for the phases A, B and C. From Table 3, it is 
much obvious that MWNN is more effective than BPN in all the phases A, B and C. 
 

 
Fig.  5(a): FFT spectrum  of  Fig. 5.  

 
Table 3: Comparison of THD measurement and Error value. 

Phases 
Actual current value 

( in THD) 

Predicted current value 
(in THD) 

Error value 
( in THD) 

BPN MWNN BPN MWNN 

Phase A 77.37 76.5968 77.3626 0.7732 0.0074 

Phase B 83 82.1705 82.9944 0.8295 0.0056 

Phase C 87.52 86.645 87.5134 0.875 0.0066 

 

 Fig. 6 represents the error plot for the phases A, B and C. Fig. 6 shows the comparison of error value 

between the simulated THD values and the actual THD values in phases A, B and C. In Fig. 6, the morlet 

wavelet neural network provides the very least amount of error with reduced training time compared with BPN. 
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Fig. 6: Error plot for the phases A, B and C. 

 

 Table 4 shows the comparison of computational time and training epochs. From Table 4, It can be observed 

that, the computational time of the proposed method is lower than that of the BPN. The computational times for 

BPN are 22.013897, 20.365533 and 21.764103 seconds for the phases A, B and C. The computational times for 

MWNN are 0.149413, 0.153773 and 0.124626 seconds for the phases A, B and C.  Table 4 also represents the 

comparison of training epochs between BPN network and MWNN network. 

 
Table 4: Comparison of computational time and training epochs. 

Phases 
Computational time (in seconds) Training Epochs 

BPN MWNN BPN MWNN 

Phase A 22.013897 0.149413 2311 54 

Phase B 20.365533 0.153773 2309 55 

Phase C 21.764103 0.124626 2305 50 

 

 Fig. 7 represents the comparison of computational time plot. From Fig. 7, the computational time for 

MWNN is very low values compared with the computational time of BPN. The low computational time makes 

the proposed method is suitable for real time applications. 
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Fig. 7: Computational time for phases A, B and C. 



236                                                            A.S.S. Murugan and V. Suresh Kumar, 2015 

Australian Journal of Basic and Applied Sciences, 9(1) January 2015, Pages: 231-237 

 Fig. 8 shows the training epochs plot obtained in phases A, B and C. The BPN network takes 2311, 2309 

and 2305 iterations and also MWNN takes the training epochs are 54, 55 and 50. From Fig. 8, the MWNN takes 

very low training iterations compared with BPN. 

 

2311 2309 2305

54 55 50

0

500

1000

1500

2000

2500

Phase A Phase B Phase C

E
p

o
ch

s

BPN

MWNN

 
 

Fig. 8: Training epochs for the phases A, B and C. 

 

 Table 5 shows the comparison of relative error between MWNN and other experimental results 

(Joy Mazumdar et al., 2007). The resultant error (e rm) is the new parameter, which is used for the purpose 

of comparison between the different methods. 

 
Table 5: Comparison of Proposed MWNN with Other works Practical Data. 

RNN Method   (Joy Mazumdar et al., 2007) Proposed MWNN Method 

Experimental 

results 

Actual 

current 
value 

( in 

THD) 

Predicted 

current 

value 
(in THD) 

erm 

Simulatio

n Results 
 

Actual 

current 
value 

( in 

THD) 

Predicted current value 

(in THD) 
erm 

FFT BPN FFT BPN MWNN BPN MWNN 

Triac with 0o 

Firing angle 
6.11% 4.18% -46.17% Phase A 77.37 76.5968 77.3626 0.99935 % 0.00956 % 

Triac with 
30o Firing 

angle 

29.25% 30.58% 4.35% Phase B 83 82.1705 82.9944 0.99940% 0.00681% 

Phase A of 

Variable 
Speed Drive 

(VSD) 

74.27% 66.69% -11.37% Phase C 87.52 86.645 87.5134 0.99977% 0.0066% 

 

The resultant error (e rm)   is defined as  

Resultant error in measurement erm  = %
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 Where THDA  is the actual current THD value measured at the point of common coupling (PCC) and THDP 

is the predicted current THD value. The resultant error is calculated for the proposed MWNN method 

and compared with the Back Propagation Neural network (BPN) and Recurrent Neural Network. 

The accuracy of the proposed MWNN method is determined based on the resultant error in 

measurement (erm). From Table 5 , the estimated resultant error for the proposed MWNN method is very 

less compared with BPN and RNN methods. 

 

5.0 Conclusion: 

 This paper demonstrated that the ability of adaptive morlet wavelet neural network is used to estimate true 

harmonic content of the current caused by the load. The proposed adaptive MWNN is utilized to estimate the 

true harmonic distortion at the PCC without disconnecting any load. The proposed adaptive morlet wavelet 

neural network employs wavelet coefficients, therefore, reduces the training time and its estimation accuracy is 

not affected by local variations in the signal due to practical scenarios. When compared to conventional FFT and 

back propagation neural network whose activation function is sigmoid, the proposed method provides the 

improved estimation accuracy in the presence of frequency deviation and noise. The computational time of 

MWNN is considerably low, which makes it suitable for real time application in power quality metering 

equipment. 
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