Inverse Current Measurement Method for Parameters Estimating of Miniature Loudspeaker

1Chi-Chang Wang, 2Jin-Huang Huang, 3Thi-Thao Ngo, 4Van-The Than

1Department of Mechanical and Computer-Aided Engineering, Feng Chia University, No. 100 Wenhwa Rd., Seatwen, Taichung, Taiwan 40724, R.O.C.
2Department of Mechanical and Computer-Aided Engineering, and Electroacoustic Graduate Program, Feng Chia University, No. 100 Wenhwa Rd., Seatwen, Taichung, Taiwan 40724, R.O.C.
3Faculty of Mechanical Engineering, Hung Yen University of Technology and Education, Khoai Chau, Hung Yen, Vietnam.
4Ph. D. Program of Mechanical and Aeronautical Engineering, Feng Chia University, No. 100 Wenhwa Rd., Seatwen, Taichung, Taiwan 40724, R.O.C.

Address For Correspondence:
Van-The Than, Ph. D. program of Mechanical and Aeronautical Engineering, Feng Chia University, No. 100 Wenhwa Rd., Seatwen, Taichung, Taiwan 40724, R.O.C.
E-mail: thanthe.ck@gmail.com; thanthe.ck@mail.fcu.edu.tw

ARTICLE INFO

Article history:
Received 18 July 2016
Accepted 21 August 2016
Published 3 September 2016

Keywords:
Inverse method
Miniature loudspeaker
Scale factor
Measurement error

ABSTRACT

This paper presents an inverse method to accurately estimate five electroacoustic parameters of miniature loudspeaker, which are voice-coil inductance L_v, mechanical mass m^m, mechanical resistance R^m, mechanical stiffness K^m and force factor B_l, based on only measured current. Transduction equations of the loudspeaker are expressed for the inverse computation procedure. Results show that the estimated currents as well as the five parameters are agreement with exact values even measurement errors are involved. In addition, effects of scale factors and optimization methodology are also analyzed. It believes that the method has potential to predict electroacoustic parameters of the miniature loudspeaker which are usually difficult to directly measure.

INTRODUCTION

Miniature loudspeaker (ML) in Fig. 1 is widely used in acoustic technology. Microphone sound reception and laser displacement measurement methods were used to measure electroacoustic lumped parameters. The traditional measurement principle changes the loudspeaker impedance frequency response curve peak frequency and determines the parameter values according to the change, such as close-box method (Beranek 1993 and David 1978) and add mass method (Remeberto 1991). In recent years, laser measurement technology (Klippel, 1990, 1999) and system identification (Knudsen et al., 2007) to measure the voice coil displacement and some parameters in Z-domain are become popular. However, the present ML diaphragm is too light, and the voice coil stroke is too short. Clay around the light diaphragm may cause nonlinear vibration characteristics of the support suspension system of loudspeaker (Pedersen & Agerkvist, 2007; Pawat et al., 2012; Chun Chang et al., 2012). In addition, the ML diaphragm can be made by PE or PVC transparent material instead of traditional paper or rubber. Therefore, the previous laser method based on displacement may not be appropriated for measuring parameters on the kind of ML. Fortunately, lumped parameter model based on differential equation form to analyze loudspeaker has been proposed by Klippel (Klippel, 1990, 1999) and Beranek (Beranek, 1993). As shown in Fig. 2, the lumped parameter model of ML includes parameters of voice-coil inductance L_v, voice-
coil resistance R_c, mechanical mass M_m, mechanical resistance R_m, mechanical stiffness K_m, and force factor Bl; and it is divided into electrical and mechanical domains. These five parameters are normally given as input values for solving differential equations to obtain displacement $X(t)$ and current $I(t)$ of ML. Applying inverse method to estimate the five parameters based on the differential equation of the lumped parameter model of ML has never presented in any previous researches. In this study, the inverse method, which has been successfully applied for solving heat transfer problems (Wang, 2011; Lin David et al., 2008; Chen & Su, 2008), is used to estimate the five parameters by using measured current values. Influence of parameter scales, optimization method, and measurement errors on inverse results are carried out and discussed.

![Fig. 1: Miniature loudspeaker](image)

2. Inverse Current Measurement Method:

2.1. Lumped parameter model:

According to the structure of ML in Fig. 1, an equivalent circuit for ML is established and shown in Fig. 2. Wavelength generated in low-frequency vibration of ML is quite larger than the ML’s geometry. Therefore, the components in electrical domain, mechanical domain and acoustic domain can be regarded as lumped parameter model. As observed, the electrical domain contains two parameters (R_c and L_c) and three parameters (M_m, R_m and K_m) in the mechanical domain. Two domains are connected through the force factor Bl. Therefore, the governing equation of the ML can be deduced from the lumped parameter model by using Newton laws of motion and Kirchhoff’s voltage law as:

$$M_m \frac{d^2 X(t)}{dt^2} + R_m \frac{dX(t)}{dt} + K_m X(t) = Bl I(t)$$ \hspace{1cm} (1)

$$L_c \frac{dI(t)}{dt} + R_c I(t) + Bl \frac{dX(t)}{dt} = e(t)$$ \hspace{1cm} (2)

where $e(t)$ is the time-dependent input voltage of the ML. $I(t)$ and $X(t)$ are the voice coil current and diaphragm displacement, respectively.

2.2. Objective function and optimization method:

The inverse problem is concerned with estimating electroacoustic parameters based on knowledge of the current in ML. Unknown vector can be expressed as:

$$w = [M_m \ R_m \ K_m \ Bl \ L_c]$$ \hspace{1cm} (3)

Then an objective function J is defined by measured value $I_{meas}(t)$ and estimated value $I(t)$ as
\[J(\mathbf{w}) = \int_0^t \left [I(\mathbf{w},t) - I_{\text{mea}}(t) \right] dt \] \hspace{2cm} (4)

when the objective function \(J \) is minimum, the estimated value \(I_{\text{est}}(t) \) approaches to the measured value \(I_{\text{mea}}(t) \). There are many optimal methods to minimize the \(J \) value. In present paper, conjugate gradient method (CGM) and steepest descent method (SDM) are employed to find the best direction and search step size. In general, the SDM has fast convergence along the negative gradient at value far from the optimal values, but it requires a long time for convergence when the value are near the optimal values. Whereas the CGM is an algorithm for finding the nearest local minimum of variables which presuppose that the gradient of the function can be computed. For CGM, the iteration equation is given as:

\[\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \beta^{(k)} \mathbf{P}^{(k+1)} \] \hspace{2cm} (5)

\[\mathbf{P}^{(k+1)} = \nabla J^{(k)} + \gamma^{(k)} \mathbf{P}^{(k)} \] \hspace{2cm} (6)

where \(k \) is the number of iterations. \(\beta^{(k)} \) stands the search step size. \(\mathbf{P}^{(k+1)} \) denotes the descent direction. \(\gamma^{(k)} \) is conjugate coefficient and can calculate by one of the three forms in Eq. (7).

\[\gamma_{tt}^{(k)} = \frac{\left\| \nabla J^{(k)} \right\|^2}{\left\| \nabla J^{(k-i)} \right\|^2}, \quad \gamma_{tt}^{(k)} = \frac{\left\| \nabla J^{(k)} \right\|^2}{\left\| \nabla J^{(k-i)} \right\|^2}, \quad \gamma_{tt}^{(k)} \geq 1 \] \hspace{2cm} (7)

and \(\nabla J^{(k)} \) represents the gradient of the objective function.

\[\nabla J = \left[\frac{\partial J}{\partial M}, \frac{\partial J}{\partial R}, \frac{\partial J}{\partial K}, \frac{\partial J}{\partial B}, \frac{\partial J}{\partial L} \right] \] \hspace{2cm} (8)

If \(k=0 \) then \(\gamma^{(k)} = 0 \). When the descent direction disregards \(\gamma^{(k)} \mathbf{P}^{(k)} \), \(\mathbf{P} \) of Eq. (6) degrades into the gradient of the objective function \(\nabla J \), known as SDM. The \(I(t) \), \(\nabla J \) and \(\beta \) must be found through direct, adjoint and sensitivity problem.

2.3. Solving direct problem for \(I(t) \):

We use the hybrid spline difference method proposed by Wang (Wang et al., 2012) to solve for determining \(I(t) \) because of its simplicity and high accuracy \((O(\Delta t^4)) \) compared to the finite difference method \((O(\Delta t^2)) \). The following discrete expression to discretize differential equation as

\[\frac{p_{n+1}^{s} + 10 p_{n}^{s} + p_{n-1}^{s}}{12} - \frac{dI(t^n)}{dt} = \frac{p_{n+1}^{s} - p_{n-1}^{s}}{2\Delta t} \] \hspace{2cm} (9)

where \(p \) and \(n \) are the parameters of spline value and time; then \(p_{n}^{s} \), the value of \(I(t^n) \) and its derivation can be obtained rapidly.

Substituting Eq. (9) into Eqs. (1-2), we have:

\[M_m \left(p_{n+1}^{s} - 2 p_{n}^{s} + p_{n-1}^{s} \right) \frac{\Delta t^2}{\Delta t} + R_m \left(p_{n+1}^{s} - p_{n}^{s} \right) - \frac{\Delta t}{\Delta t} = K_m \left(p_{n+1}^{s} + 10 p_{n}^{s} + p_{n-1}^{s} \right) \] \hspace{2cm} (10)

\[L_r \left(\frac{p_{n+1}^{s} - p_{n-1}^{s}}{2\Delta t} - \Delta t^n \right) + R_r \left(\frac{p_{n+1}^{s} + 10 p_{n}^{s} + p_{n-1}^{s}}{12} \right) + B_l \left[\frac{p_{n+1}^{s} - p_{n-1}^{s}}{2\Delta t} - \Delta X^n \right] = e(t) \] \hspace{2cm} (11)

With given value of vector \(\mathbf{w} = [M_m \quad R_m \quad K_m \quad B_l \quad L_r] \), the current values \(I(t^n) \) can be obtained.

2.4. Adjoint problem for \(\nabla J \):

To determine the gradient of the objective function \(\nabla J \) in Eq. (8), solving an adjoint problem is applied in this study. Eqs. (1) and (2) are multiplied by the Lagrange multipliers \(\lambda(t) \) and \(G(t) \), respectively. The objective function now becomes:
\[J(\mathbf{w}; \lambda; G) = \text{Eq. (4)} + \int_0^\tau \lambda(t) \text{Eq. (1)} dt + \int_0^\tau G(t) \text{Eq. (2)} dt \]

\[= \int_0^\tau [I(t) - I_{\text{mea}}(t)]^2 dt + \int_0^\tau \lambda(t) \left[M_n \frac{d^2 X(t)}{dt^2} + R_n \frac{dX(t)}{dt} + K_n X(t) - BL(t) \right] dt \]

\[+ \int_0^\tau G(t) \left[L_x \frac{dt(t)}{dt} + R_x I(t) + BL \frac{dX(t)}{dt} - e(t) \right] dt \]

The unknown \(\mathbf{w} \) is added a perturbing, \(\delta \mathbf{w} = [\delta M_n, \delta R_n, \delta K_n, \delta BL, \delta L_x] \), and then replaced to Eq. (12), it yields:

\[\delta J(\mathbf{w}; \lambda; G) = [R_n \lambda(t) X(t) + L_x G(t) \delta I(t) + BL G(t) \delta X(t)] + \left[M_n \lambda(t) \frac{d\delta X(t)}{dt} + M_n \frac{d\lambda(t)}{dt} \delta X(t) \right] \]

\[+ \int_0^\tau \left[M_n \frac{d^2 \lambda(t)}{dt^2} - R_n \frac{d\lambda(t)}{dt} + K_n \lambda(t) - BL \frac{dG(t)}{dt} \right] \delta X(t) dt \]

\[+ \int_0^\tau \left[-L_x \frac{dG(t)}{dt} - BL \lambda(t) + 2[I(t) - I_{\text{mea}}(t)] \right] \delta I(t) dt \]

\[+ \int_0^\tau \lambda(t) \left(\frac{d^2 X(t)}{dt^2} M_n + R_n \frac{dX(t)}{dt} \delta R_n + X(t) \delta K_n - I(t) \delta BL \right) dt \]

\[+ \int_0^\tau G(t) \left(\frac{dt(t)}{dt} \delta L_x + I(t) \delta R_n + \frac{dX(t)}{dt} \delta BL \right) dt \]

As \(I(0) \) and \(dX(0)/dt \) are given, \(\delta I(0) \) and \(d \delta X(0)/dt \) are zero. In addition, the micro variable \(\delta I(t) \) is not zero, and the optimal solution occurs when the \(\delta J(\mathbf{w}; \lambda; G) \) of the above equation is zero, the adjoint equation can be obtained:

\[M_n \frac{d^2 \lambda(t)}{dt^2} - R_n \frac{d\lambda(t)}{dt} + K_n \lambda(t) = BL \frac{dG(t)}{dt} , t \in (t_f, 0) \]

\[-L_x \frac{dG(t)}{dt} = BL \lambda(t) - 2[I(t) - I_{\text{mea}}(t)] \]

(14)

The accompanied final value conditions are

\[G(t_f) = 0, \lambda(t_f) = 0 \text{ and } d \lambda(t_f)/dt = 0 \]

(15)

According to literature (Lasdon et al., 1967), we can write as:

\[\delta J(\mathbf{w}) = \int_0^\tau \delta \mathbf{w} \nabla J dt = \int_0^\tau \left[\frac{\partial J}{\partial M_n} \frac{d\lambda(t)}{dt} + \frac{\partial J}{\partial R_n} \frac{d\lambda(t)}{dt} + \frac{\partial J}{\partial K_n} \frac{d\lambda(t)}{dt} + \frac{\partial J}{\partial BL} \frac{d\lambda(t)}{dt} + \frac{\partial J}{\partial L_x} \frac{d\lambda(t)}{dt} \right] dt \]

(16)

Compare Eq. (16) with the integral term of the last two terms on the right of Eq. (13), the gradient of objective function is established as:

\[\nabla J = \left[\frac{\partial J}{\partial M_n}, \frac{\partial J}{\partial R_n}, \frac{\partial J}{\partial K_n}, \frac{\partial J}{\partial BL}, \frac{\partial J}{\partial L_x} \right] \]

(17)

\[= \left[\int_0^\tau \lambda(t) \frac{d^2 X(t)}{dt^2} dt, \int_0^\tau \lambda(t) \frac{dX(t)}{dt} dt, \int_0^\tau \lambda(t) X(t) dt, \int_0^\tau \lambda(t) I(t) dt, \int_0^\tau \lambda(t) G(t) \frac{dt(t)}{dt} dt \right] \]

When the gradient of objective function \(\nabla J \) is obtained, \(\mathbf{P} \) and \(\gamma \) can be acquired by Eqs. (6) and (7), respectively.

2.5 Sensitivity problem for \(\beta \):

The search step size, \(\beta \), is defined as

\[\beta = \frac{\int_0^\tau [I(t) - I_{\text{mea}}(t)] \delta I(t) dt}{\int_0^\tau \delta I^2(t) dt} \]

(18)

For the micro variable \(\delta I(t) \) of \(I(t) \), we must solve the sensitivity problem as

\[M_n \frac{d^2 \delta X(t)}{dt^2} + R_n \frac{d\delta X(t)}{dt} + K_n \delta X(t) = -\frac{d^2 X(t)}{dt^2} \delta M_n - \frac{dX(t)}{dt} \delta R_n - X(t) \delta K_n + I(t) \delta BL + BL \delta I(t) \]

(19)
\[
\frac{d\delta I(t)}{dt} = -\frac{dI(t)}{dt} \delta L_e - \frac{dX(t)}{dt} \delta Bl - Bl \frac{d\delta X(t)}{dt}
\]

with initial conditions:
\[
\delta I(t) = 0 \text{ for } t = 0; \delta X(t) = 0 \text{ and } \frac{d\delta X(t)}{dt} = 0 \text{ for } t = 0
\]

(20)

3. Scale factors:
Because of having large difference between some unknown values, in order to avoid error occurs when calculating value of \(\nabla J\), some unknown parameters should be divided by scale factors to get appropriate of these unknown parameters. The unknowns are rewrite as follows:

\[
\overline{M'} = \frac{M}{S_{M}}, \overline{R'} = \frac{R}{S_{R}}, \overline{K'} = \frac{K}{S_{K}}, \overline{Bl} = \frac{Bl}{S_{Bl}}, \overline{L_e} = \frac{L_e}{S_{L_e}}
\]

(22)

where \(S\) is the scale factor, \(\overline{M'}, \overline{R'}, \overline{K'}, \overline{Bl} \text{ and } \overline{L_e}\) are new predicted parameters.

RESULT AND DISCUSSION

The exact values of \([M', R', K', Bl, L_e]\) are listed in Table 1. An input excitation voltage \(e(t) = 5 \times 10^3 \sin(2\pi ft)\) is employed to get exact current \(I_{\text{mea}}(t)\). Thus, the maximum voltage is \(5 \times 10^3 \text{mV}\) and the stimulus frequency is \(f = 100 + 150 \sin(\pi t/t_f)\). Total simulation time is \(t_f = 3\) sec.

Table 1: Miniature loudspeaker parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(M') (kg)</th>
<th>(R') (kg/s)</th>
<th>(K') (N/m)</th>
<th>(Bl) (N/A)</th>
<th>(L_e) (H)</th>
<th>(R_e) (Ohm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>9.45E-4</td>
<td>0.113</td>
<td>699.3</td>
<td>1.68</td>
<td>1.1E-4</td>
<td>3.51</td>
</tr>
</tbody>
</table>

4.1. Influence of scale factor:

Fig. 3(a) shows the gradient direction and value when scale factors are not used. It is observed that the gradient value of \(K_n\) and \(L_e\) are too different. In addition, when the search direction is not parallel with \(K_n\) axis due to numerical computation error and the search step cannot move forward under having large distinction between gradient magnitudes of \(K_n\) and \(L_e\). Hence, scale factors are employed to treat this problem. The differences of the gradient values are reduced to obtain highest convergence speed (see Fig. 3(b)).

![Fig. 3: Schematic diagram of search direction](image)

(a) Without scale factors
(b) With scale factors

Some numerical simulation for different scale factors are performed and tabled in Table 2. For case \(S_{K_n} = 1E3\) and \(S_{L_e} = 1E-4\), if \(S_M > 1E-3\) the objective function \(J(w)\) is difficult to reach \(1E-10\) after 30 iterations. However, the objective function can be approached to \(1E-10\) by using \(S_M < 1E-3\) after maximum 30 iterations. For cases of \(S_{K_n} > 1E3, S_L > 1E-4\) and \(S_e < 1E-6\), the objective function cannot also converge to \(1E-10\). From Table 2, it evidences that value of \(S_M\) and \(S_{K_n}\) should not be greater than \(1E-3\) and \(1E3\), respectively. While value of \(S_e\) should be from \(1E-4\) to \(1E-6\). Through all analyses, one can conclude that the choosing appropriate scale factors must be done for situations of exiting large difference between unknowns.
Table 2: Influence of scale factors on number of iterations

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$S_{u_{c}}$ ($S_{k_{c}} = 1E3$)</td>
<td>Number</td>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 3$)</td>
<td>Number</td>
</tr>
<tr>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 4$)</td>
<td></td>
<td></td>
<td>($S_{u_{c}} = 1E - 4$)</td>
<td></td>
</tr>
<tr>
<td>$S_{u_{c}}$ ($S_{k_{c}} = 1E3$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 3$)</td>
<td>Number</td>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 4$)</td>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>$S_{u_{c}}$ ($S_{k_{c}} = 1E3$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 3$)</td>
<td>Number</td>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 4$)</td>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>$S_{u_{c}}$ ($S_{k_{c}} = 1E3$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 3$)</td>
<td>Number</td>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 4$)</td>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>$S_{u_{c}}$ ($S_{k_{c}} = 1E3$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 3$)</td>
<td>Number</td>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 4$)</td>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>$S_{u_{c}}$ ($S_{k_{c}} = 1E3$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 3$)</td>
<td>Number</td>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 4$)</td>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>$S_{u_{c}}$ ($S_{k_{c}} = 1E3$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 3$)</td>
<td>Number</td>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 4$)</td>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>$S_{u_{c}}$ ($S_{k_{c}} = 1E3$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 3$)</td>
<td>Number</td>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 4$)</td>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>$S_{u_{c}}$ ($S_{k_{c}} = 1E3$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 3$)</td>
<td>Number</td>
<td>$S_{k_{c}}$ ($S_{u_{c}} = 1E - 4$)</td>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>$S_{u_{c}}$ ($S_{k_{c}} = 1E3$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2. Comparison of CGM with SDM:

To compare convergence capability of CGM and SDM, the number of iterations and value of the objective function for these optimal methods are shown in Fig. 4. It evidences that the SDM cannot converge toward a minimum value ($1E - 10$) after 50 iterations while the objective function can reach for the CGM. In addition, the convergence capacity for different formula of conjugate coefficients in the CGM are analyzed and compared. The results indicate that used the γ^{HS} formula can get the highest convergence speed. Hence, the CGM with γ^{HS} formula is chosen to optimize the objective function.

![Fig. 4: Comparison of the SDM and CGM (DY, FR and HS)](image)

Table 3: Influence of current measurement error σ on prediction result

<table>
<thead>
<tr>
<th>σ</th>
<th>δ</th>
<th>M_w</th>
<th>R_w</th>
<th>K_w</th>
<th>Bl</th>
<th>L_{x}</th>
<th>Average Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>9.45000E-4</td>
<td>0.11300</td>
<td>6.99300</td>
<td>1.68000</td>
<td>1.1000E-4</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>9.47020E-4</td>
<td>0.11308</td>
<td>7.00589</td>
<td>1.68123</td>
<td>1.0982E-4</td>
<td>0.236</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>9.53766E-4</td>
<td>0.11414</td>
<td>7.07274</td>
<td>1.68982</td>
<td>1.1127E-4</td>
<td>1.251</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>9.59452E-4</td>
<td>0.11463</td>
<td>7.08589</td>
<td>1.69026</td>
<td>1.1086E-4</td>
<td>1.509</td>
<td></td>
</tr>
</tbody>
</table>

Exact and inverse current results are figured out in Fig. 5. It can see that the estimated currents agree well with exact values. Moreover, the estimated parameters are much closed to the exact values, as found in Table 3. Thus, the proposed method can correctly predict the ML parameters.
In fact, measurement process always has error degree which may be caused by instrument, equipment, environment and nonlinear distortion of ML. Regarding effects of measurement error on inverse results must be carried out through adding the standard deviations σ into measured data. The measurement error using normal distribution is defined as

$$\sigma = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-0.5(t-I_{\text{exact}})^2} dt$$

(25)

where I_{mea} and I_{exact} are the measured currents with and without measurement errors, respectively. Fig. 6 shows a comparison of the exact solution and inverse results. Clearly, the estimated current is in agreement with measured value, while the measurement error has effects on estimated ML parameters. The estimated \tilde{w} for different values of σ is shown in Table 3. It is seen that value of \tilde{w} slightly increases with increased measurement errors. The average errors of \tilde{w} also rise with augment measurement error. Maximum of the average error is 1.509% when $\sigma = 50mA$. It demonstrates that the proposed inverse method can accurately estimate parameters of ML even measurement errors are involved.

Average error:

$$1 \sum_{i=1}^{5} \left| \frac{I_{\text{mea}}^{i} - I_{\text{inv}}^{i}}{I_{\text{mea}}^{i}} \right| \times 100\%$$

(26)

Conclusion:

This paper establishes an inverse method for estimating five parameters of ML based on the measurement current data. The results shown that the inverse solutions are in good agreement with exact solution. The scale factors and optimal algorithms significantly affect the convergence speed and value of objective function. The
errors of inverse results slight increase with increasing measurement errors. However, the maximum average errors of estimated results is only 1.509% corresponding to $\sigma = 50mA$. It is believed that the proposed method has potential for predicting parameters in ML and may give useful information to construct high quality ML.

ACKNOWLEDGEMENT

This study is financially sponsored by the National Science Council under Grant No. MOST 103-2221-E-035-030-MY2. The authors also thank Merry Electronic Co. for partial finance and loudspeakers.

REFERENCES