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 This paper presents the development of an equation oriented models of chemical 
processes using MOSAIC. MOSAIC is a web-based modelling software developed by 

Dynamic and Operation of Technical Plants of TU Berlin. It provides a new platform 

which can be used as an alternative to the current approach of modeling using 
programing languages. MOSAIC is particularly useful in developing custom models of 

process unit operation that is not readily available in sequential modular based process 

simulators. MOSAIC allow users to develop models, generate the models' code and 
translate the model into different environments i.e. gPROMS, Aspen custom Modeler 

(ACM), Matlab etc. To shows its efficiency, a dividing wall column (DWC) for 

oleochemical fatty acid (FA) fractionation were modelled. A step by step approach to 
the modelling using MOSAIC is shown. The results are in agreement with data from 

steady state simulation in Aspen Plus and indicate that MOSAIC is a good modelling 

environment tool. Furthermore, the modelling effort is made possible even without the 
knowledge of programming languages. In addition, a comparison with another 

modelling environment (gProms, ACM, C++, Fortran) is highlighted which is useful in 

aiding researchers to choose MOSAIC for any modelling works.  

 

INTRODUCTION 

 

In process system engineering (PSE), the necessity to develop and to solve the customized models found an 

excellent response and there are numbers of mathematical software modelling tools that support the 

programming of equation-based models. Yet, the study of the workflow of models development and 

implementation shows massive obstacle like reduction of modelling errors and programming efforts, the 

avoidance of errors and effort in documentation (Kuntsche et al., 2011). Modeling of chemical processes is 

usually done either using sequential modelling approach (SMA) or equation oriented (EO) programming. The 

former solves model block in the sequence given inlet streams. It is effective for large flow sheet, easy to use 

and user friendly. It is robust which ensure rigorous convergence and facilitate initialization step. Some 

examples are Aspen Plus, HYSYS, and Pro-II. Although the simulation can be done easily, it lacks in the 

transparency of equations systems involved and additional programming software such as Aspen Custom 

modeler (ACM) is needed to build customized equation oriented model (Stutzman et al., 1982).  

EO, on the other hand, solves a model of equations simultaneously. It is effective for solving heat-

integrated or recycled processes, optimization and model tuning analysis. The equation oriented modelling of 

chemical processes has been done by using different modelling environments, these include gPROMS, ACM, 

GAMS, Matlab, C++, Fortran and so on. However, model formulation of custom models using such software is 

http://www.ajbasweb.com/
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a time-consuming process since it takes a long time to write the programming language and debug the model.  A 

limited of supported language makes the model is only applicable in an environment that comprehend the 

programming language of the model, for other environments, the model cannot be reusable and hence need to be 

re-programmed from scratch which requires a lot of programming effort. A further cause of error when 

programming the model associated with the visual distinction within mathematical expression in documentation 

and the calculation expression in the program code (Kuntsche, 2011).  Hence, a new modelling environment 

called MOSAIC is applied in this study to develop customized model.  

MOSAIC (www.mosaic-modelling.de) is a web-based equation oriented modelling environment for 

modelling of chemical processes. It is designed for minimization of modelling errors and programming effort, 

avoid programming errors, enhance file documentation and encouragement of cooperative data storage and 

sharing. As explained in Kuntsche et al. (2011), one of the important features of MOSAIC is modelling at the 

documentation level. The model equations in the documents i.e. books, journals etc. can be written easily in 

MOSAIC using TeX code. TeX is widely common and could be used by most of all researchers and generated a 

graphical good readable output of equations. Using TeX, the documented equations in MOSAIC have the same 

readability as the documentation itself. Therefore, modelling of equations can be done even without knowledge 

of any programming language.  

As an example, we prefer to read a symbolic two-dimensional form,  

𝛼 ∙ 𝑏 = 3 ∙ ( 𝑐 + 𝑑)𝛽 

Rather than one dimensional form of a programming language, 

Alpha*b = 3*pow (c + d, beta); 

The uniqueness of MOSAIC compared with other software tools like Maple and MapleSim, which also 

allow collaborating with two-dimensional symbolic expression in this case is that, the variable names (refer 

figure 1) can contain a number of symbols that could be superscripted and subscripted (including several valued 

indices that may take a value  or a range of value) (Kuntsche et al., 2011a).  

In MOSAIC, modelling is done by creating objects separately. These objects include notation objects, 

equation objects, function objects, equation system objects, evaluation objects, and parameter objects. Notations 

are the fundamental modelling element in MOSAIC. Each variable contains in equations is provided with a 

notation that describes the meaning of the variable. Each object must be referring to a complete notation of all 

variables contained. Each object created in MOSAIC can be reused in another model since MOSAIC provide a 

good re-use facilities. This helps the user, for instance, to develop the notation suitable for the present project 

and apply it to all related models. Similarly with equations and equation systems. Thus, it will reduce the effort 

of modelling and allow reuse of model elements effectively. The other important feature of MOSAIC is code 

generation to other modelling environments i.e. Matlab, gPROMS, AMPL, ACM, GAMS, Modelica, etc. This is 

particularly useful especially for solving complex mathematical equations. MOSAIC itself can be a code 

generator and solver. In addition, MOSAIC also has the feature of centralized cooperation on the internet. It 

allows users to share their models easily in any computer and workstation. The shared model can be read or 

written on by another user on the internet.    

 

𝑃𝑜,𝑖=1
𝐿𝑉  

 

 

 

Fig. 1: Variable name in MOSAIC 

The development and implementation of new models are hard and expensive task. This is because of the 

complexity and low reusability of process models (Mangold et al., 2002). Although with existence advanced 

modeling in the market, model formulation and configuration is still time consuming process in process 

modeling (Lam et al., 2007). To overcome some of the above mention EO modelling limitations, MOSAIC 

could provide a good alternative. Hence, the objective of this paper is twofold. First is to explore the modelling 

of DWC for fatty acid fractionation using MOSAIC. Second is to compare the features of MOSAIC with 

another modelling environment (gProms, ACM, GAMS, Matlab, C++, and Fortran). This could help in deciding 

to use MOSAIC for any modelling work. 

 

Steady State Mathematical Modeling Of Dwc: 

Previously, the modelling of DWC has been done by several researchers for dynamic and controllability 

purpose. However, all of them use a modelling environment tool based on the programming language such as 

Fortran (A. Woinaroschy, 2008), Matlab (Dohare et al., 2015), GAMS (Edna et al., 2016), and C++ (Kader, 

2009). In this study, a new equation oriented approach (MOSAIC) is applied in modeling of DWC where the 

equations entered will be viewed in the form of symbolic mathematic expression. 

Separation of the ternary and multicomponent system is applicable for dividing wall column (DWC). DWC 

is a single shell, fully thermal coupled distillation column which capable of separating mixtures of three and 

Base name 

Superscript 

Index Subscript 
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more components into high purity products. DWC has been known as an intensified alternative to conventional 

distillation separation of multicomponent mixtures, with reduced energy and capital cost. Basically, the column 

consists of four sections namely rectifying, pre-fractionator, middle, and stripping section as shown in Figure 2.  

The first step of modeling begins by the formulation of equation models to describe the phenomenon 

occurring inside the distillation column. These formulated equations namely material balance equations, phase 

equilibrium equations, summation equations and heat balance equations or known as MESH equations will be 

required to formulate the model. 

 
 

Fig. 2: DWC configuration for fatty acid fractionation (Illner and Othman, 2014) 

 

MESH equations: 

The principle of designing DWC models is based on a typical distillation column (DC). There are several 

models in modelling DC among others include steady-state equilibrium (EQ) stage model, dynamic EQ stage 

model, steady-state EQ stage model with stage efficiencies and dynamic EQ stage model with stage efficiencies 

(Baur, 2000). In this study, modelling of this model will be based on steady state EQ model. In EQ stage model, 

the vapor and liquid phases are assumed to be in thermodynamic equilibrium. The MESH equations used in this 

work are depicted from Dohare et al. (2015) and represented as below:- 

Overall material balance (rectifying, pre-fractionation, middle and stripping section): 

      

0 = 𝑉𝑗+1 𝐿𝑗−1 − 𝑉𝑗 − 𝐿𝑗 + 𝐹𝑗 − 𝑆𝑗                         (1) 

 

Component material balance for component i at stage j (refer figure 3): 

 

0 = 𝑉𝑗+1,𝑦𝑗+1,𝐿𝑗−1𝑥𝑗−1,𝑖 − 𝑉𝑗𝑦𝑗,𝑖 − 𝐿𝑗𝑥𝑗,𝑖 + 𝐹𝑗𝑧𝑗,𝑖 − 𝑆𝑗𝑥𝑗,𝑖          (2) 

 

Since the model is assumed as steady state, and thus the derivative of material balance will be equal zero. 

Both j and i are subscripts to represent the stages numbers and components respectively. F represents feed flow 

rate, S represent side stream flow rate, L represents liquid flow rate, and V will represent vapor flow rate. x and y 

are the mole fraction of liquid and vapor respectively. While z represent the feed composition. The total liquid 

holdup on each stage is assumed unity (neglect flow dynamics).   

 

 
Fig. 3: Material balance diagram for stage j 
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Phase equilibrium equations: 
Phase equilibrium relation equation describes the relationship between liquid mole fraction and vapor mole 

fraction of chemical components when vapor and liquid at equilibrium state. For the ideal condition, the value of 

activity coefficient, γ will be equal to 1. Saturated vapor pressure, Po can be calculated using Antoine equation 

and P is the pressure of the column.  

𝑦𝑗,𝑖 =  𝐾𝑗,𝑖𝑥𝑗,𝑖  where 𝐾𝑗,𝑖 =  
𝛾𝑗,𝑖 𝑃𝑗,𝑖

𝑜

𝑃𝑗
             (3) 

 

Summation equations: 

The summation equation states that sum of mole fraction of each component in the liquid phase and vapor 

phase of each stage which is equal to 1. 

∑ 𝑥𝑗,𝑖 = 1𝑁
𝑖=1           ∑ 𝑦𝑗,𝑖 = 1𝑁

𝑖=1             (4) 

 

Energy balance equations: 

The energy balance of each stage of DWC can be described by the following equation: 

0 =  𝑉𝑗+1𝐻𝑗+1
𝑉 + 𝐿𝑗−1𝐻𝑗−1

𝐿 − 𝑉𝑗𝐻𝑗
𝑉 − 𝐿𝑗𝐻𝑗

𝐿 + 𝐹𝑗𝐻𝑗
𝐹 − 𝑆𝑗𝐻𝑗

𝐿         (5) 

In energy balance, 𝐻𝑗
𝐿  and 𝐻𝑗

𝑉 represent the liquid and vapor enthalpy on the j th stage, respectively. Again, 

for the steady state, the derivative of energy balance will be equal to zero.   

 

Internal flow in DWC: 

The challenge in DWC modelling is to accommodate the internal flow between the partition walls. Based 

on figure 1, the partition wall in the middle of the column (section 3) separates the pre-fractionator (section 2) 

and the middle section. A feed stream is introduced into the pre-fractionator section while the side stream 

removes the intermediate component from the middle section. Liquid from rectifying section (section 1) will be 

split into two parts, some portion enters the pre-fractionator section and the rest, to the middle section. The 

liquid splitting can be described by an equation as follow: 

𝑟(2) = 𝛼𝐿𝑛1
(1)

                where α is liquid split factor          (6) 

𝑟(3) = (1 − 𝛼)𝐿𝑛1
(1)

             (7) 

On the other hand, vapor from stripping column (section 4) is also split into both pre-fractionator and 

middle section according to the following equations: 

𝑉𝑛2
(2)

= 𝛽𝑉1
(4)

        where 𝛽 is vapour split factor          (8) 

𝑉𝑛3
(3)

= (1 − 𝛽)𝑉1
(4)

             (9) 

At the intersection of rectifying section with pre-fractionator section and middle section, the vapor is mixed 

according to the following equations: 

𝑉𝑛1
(1)

= 𝑉1
(2)

+ 𝑉1
(3)

           (10) 

𝑉𝑛1
(1)

𝑦𝑛1,𝑖
(1)

= 𝑉1
(2)

𝑦1,𝑖
(2)

+ 𝑉1
(3)

𝑦1,𝑖
(3)

                           (11) 

 

Whereas, at the intersection of the pre-fractionator section and a middle section with stripping section 4, the 

liquid mixing can be described as follows: 

𝑟(4) = 𝑟𝑛2
(2)

+ 𝑟𝑛3
(3)

            (12) 

𝑟(4)𝑥𝑟
(4)

= 𝑟𝑛2
(2)

𝑥𝑛2
(2)

+ 𝑟𝑛3
(3)

𝑥𝑛3
(3)

          (13) 

 

DWC process description: 

The DWC in this work is used to separate fatty acid cuts into three products namely light cut (LC), middle 

cut (MC), and heavy cut (HC). The design parameters for the DWC is based on the work by Illner and Othman 

(2014) in which the rectifying section consists of 14 stages, while pre-fractionator section have 21 stages, 

middle section and stripping section have 20 and 24 stages respectively. The condenser is at stage 0 and reboiler 

at the last/bottom stage of the column. The operating pressure is 0.03 bar. Feed stream enters at stage 10 from 

the top in the pre-fractionator section and the side product is withdrawn at stage 3 in middle section. Details of 

the DWC design and feed specifications are shown in Table 1. Illner and Othman (2014) have simulated the 

process in Aspen Plus using the equivalent model of DWC with four rigorous RADFRAC model, two unit of 

mixers and splitters for the liquid and vapour internal mixing and splitting purpose. The Aspen results will be 

utilized for initialization value in MOSAIC and comparison purposes.  

 

 

 

 
 



34                                                                          R. Idris et al, 2017 

Australian Journal of Basic and Applied Sciences, 11(3) Special 2017, Pages: 30-42 

 

Table 1: Summary of the DWC design specifications 

Parameter Specification 

Feed stream FA mixture 
Feed flow rate (kmol/hr) 0.02187 

Temperature (K) 448.15 

Column pressure (bar) 0.03 
Feed composition (mass fraction) 

• C10 (LC) 

• C14 (MC) 

• C16 (HC) 

 

0.085 

0.65 
0.265 

Liquid split factor 0.84 

Vapour split factor 0.5 

No of stages (Rectifying/Pre-frac/Middle/Stripping) 14/21/20/24 

 

Steps For Modeling In Mosaic: 

The steps of modelling using MOSAIC is summarized in Figure 7.  Overall there are seven steps.  

      

Step 1: Creation of a notation: 
In this first step, symbols with descriptions are created in the Notation page to represent all variables 

involve in the equations as shown in Figure 4. Each variable is represented by a unique base name or can be 

attached together with subscripts and/or superscripts. By introducing subscripts/superscripts, two or more 

variables are allowed to have a similar base name. Additionally, indices involved in the equations can also be 

added. Note that, all notations should have a unique description such as its full abbreviation or engineering 

units.  

 

 
 

Fig. 4: Notation declaration screenshot from the MOSAIC GUI 

 

Step 2: Creation of equation objects: 

The next step is to create the equations. The equations formulation can be written using a TeX-style 

mathematical language as shown in Figure 5. TeX is a documentary language which allows equations to be 

expressed in mathematical terms. When creating the equation, it might also have a parameter list to emphasize 

variables that should be treated as global parameters. However, for this case, all equations does not involve a 

parameter (refer step 3 for creating parameter list). Note that when using subscripts or superscripts, curly 

brackets are compulsory. All operators, have to be expressed clearly and any missing operators could cause an 

error. For instance, to express ‘V times y is equal to 0’, the expression is supposed to be V . y=0, not Vy=0 as the 

second expression could be easily be misunderstood as ‘variable Vy is equal to 0’. 

c 

c 
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Fig. 5: Mathematical equations creation 

 

Step 3: Creation of function objects: 

Step 3 is almost the same as the creation of equation objects. However, the method of creating functions is 

not as straightforward as creating equations which may require the creation of parameter list objects. Functions 

usually consist of one output value and several input values. A function is required whenever it is possible to 

compute the value of an output variable that is dependent on a finite number of input variables in the equation 

system. Besides, the notation of a function is independent and unrelated from the notation used in the equation 

system. An example in this case study to create saturated pressure function using Antoine equation is as follows 

(please refer Figure 6):- 

i) The parameter for Antoine equation is first created by loading the ‘notation of parameter.mosnot’ in 

notation file. 

ii) Next, create and save the parameter list (A, B, and C) as ‘antoine equation’. Note that, the list of 

parameters does not have any index. They are considered as a special form of design variable and are kept in a 

separate list in the degree of freedom calculation.  

iii) Then, create the function by loading the ‘antoine equation.mospar’ in the parameters file, and ‘function 

notation.mosnot’ in the notation file as well.  

iv) Click and insert the output variable (Po) and input variable (T) in output/input tab.  

v) After that, activate the ‘param set index’ tab to specify which index of the parameter list’s notation is 

used if the function is applied with an index. In this case, “k” is used which indicate the component index (k = 

3).  

vi) Finally, express the right-hand side of the equation in the formula expression tab and save the function. 

 



36                                                                          R. Idris et al, 2017 

Australian Journal of Basic and Applied Sciences, 11(3) Special 2017, Pages: 30-42 

 

   
 

Fig. 6: Parameter list and function creation. 

 

Step 4: Creation of equation systems: 
After all equations and functions have been defined, it needs to be connected by equation systems. Adding 

equations and functions to equation systems can be done easily. First of all, the notation must be loaded before 

creating the equation system. Then, in the connected elements tab, all equations and equation systems that have 

created will be added by clicking ‘add’ button as shown in Figure 8(a).  Next is to add the function. It is required 

to set the input variables and its corresponding output variable. Noted that in Figure 8(b) the ‘Input Naming’ and 

‘Output Naming’ in the function itself are called ‘Generic Naming’, while the corresponding variables in the 

equation system are termed ‘Applied Naming’. For this case, Po and T will be applied as 𝑃𝑗1,𝑖
𝑜,𝑜𝑛𝑒

 (saturated 

pressure of the i th component at the j th stage in section 1) of DWC and 𝑇𝑗1
𝑜𝑛𝑒  (temperature at the j th stage in 

section 1) respectively. A preview of all equations and functions in an equation system can be generated as 

shown in Figure 8(a). 

 
Fig. 7: Procedure of modelling using MOSAIC  
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(a)                                                                              (b) 

Fig. 8: Equation system editor of (a) connected elements/equations and (b) functions 

 

Step 5: Creation of evaluation objects: 

Once equation systems have been created, an evaluation object is then created. The purpose of evaluation 

object is to provide all necessary information to specify a problem to be solved based on the equation system. 

This includes specification of the maximum index value, classification of design and iteration variables, and 

giving values to the design and parameter variables as well as providing initial values for the iteration variables. 

In order to create the evaluation objects, the equation system first has to be loaded. Once it is loaded, indexing 

can be made by specifying the max value of each index shown in figure 9(a). Once specified, all equations and 

functions involved in the model are generated and shown in the ‘Instance’ as in Figure 9(b).  

 

 
      (a)  

 
      (b) 

Fig. 9: (a) Index specification and (b) list of equations in the system 
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Step 6: Specification of initial values and design values: 

The next step is to define iteration variables and design variables. Generally, fixed value variables are 

design variables whereas calculated variables are iteration variables. The degree of freedom (DOF) will be 

automatically calculated until it becomes zero which giving the DOF for the actual selection of design variables 

and does consider linear independency (refer figure 10). The value of each design variable must be specified. 

For the iteration variables, good initial values are important in solving the models since the modelling would 

work well when all variables are near the solution(Pantelides et al., 2015; Aspen Technology, 2009). Thus, in 

this case study, all initialization values were based on the results of Aspen Plus steady state simulation data for 

good convergence. In this case study, the temperature and liquid composition of eah stage in every section 

( 𝑇𝑗1
𝑜𝑛𝑒 , 𝑇𝑗2

𝑡𝑤𝑜 , 𝑇𝑗3
𝑡ℎ𝑟𝑒𝑒 , 𝑇𝑗4

𝑓𝑜𝑢𝑟
, 𝑥𝑗1

𝑜𝑛𝑒 , 𝑥𝑗2
𝑡𝑤𝑜, 𝑥𝑗3

𝑡ℎ𝑟𝑒𝑒 , 𝑥𝑗4
𝑓𝑜𝑢𝑟

) will be assigned as an iteration variables. In addition, the 

parameters specification values that contain in the equation system need to be specified as well. The entire 

simulation (equation system, indexing, variable and parameter speification) need to be save prior to evaluation. 

 

 
Fig. 10: Variable specifications of equation system 

 

Step 7: Code generation and evaluation: 

The concept of MOSAIC is to provide code generation for many languages. In this work, the selection for 

code generation is MATLAB NLE (Nonlinear Equation System) (refer figure 11). On the tab generation, status 

information which contains a checklist of the steps to be accomplished right before code generation. In case the 

information is not complete, hints (text saying either information missing or ready for evaluation) are shown. 

The generated codes can be run at their own corresponding environment for the solving of the model. Figure 12 

shows a portion of the whole codes. The code is then compiled in Matlab.  

 

 
 

Fig. 11: Code generation and evaluation 
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Fig. 12: Generated code in MOSAIC 

 

Model Comparison With Aspen Plus: 

Upon running in MATLAB and converged, the temperature profile of the DWC model is shown in Figure 

13. In the rectifying section, it can be seen that temperature is maintained at 440 K and starts to increase slowly 

to 494 K and 484 K in the pre-fractionation and middle section respectively. The temperature difference 

between these two sections is 10 K. Column temperature continues to increase until it achieves the temperature 

of 503 K at the stripping section. For composition profile, the results are shown in Figure 14. The system 

reached nearly 99% purity of C10 (LC) on distillate product, 94% of C14 (MC) on side product, and 99% of 

C16 (HC) on the bottom product. Upon comparing with results of Aspen Plus, as in Table 2, it can be seen that 

the expected results of code generated (temperature and product composition) by MOSAIC are in agreement 

with the data taken from simulation results. This proves that MOSAIC is indeed a great modelling environment 

tool due to good functionality in code generator to another different language. Besides, this indicates that the 

equations of the DWC model formulated in MOSAIC are precise and reliable. In addition, the extended work in 

dynamic behavior and control structure of DWC can be develop using the steady-state results of MOSAIC.  

 

 
 

Fig. 13: Temperature versus stage number in each section 

 

420

440

460

480

500

520

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Te
m

p
er

at
u

re
, 

K

stage number

Temperature Profile
Pre-fractionation

(j2=21 stages)

Middle/main
(j3=20 stages)

Stripping
(j4=24 stages)

Rectification
(j1=14 stages)



40                                                                          R. Idris et al, 2017 

Australian Journal of Basic and Applied Sciences, 11(3) Special 2017, Pages: 30-42 

 

 
 

Fig. 14: Liquid composition convergence results in Matlab (for every section) 

 
Table 2: Comparison of the converged results in Matlab with Aspen Plus steady state simulation 

                      Aspen Plus                             Matlab 

Quantity Units Top Middle Bottom Top  Middle Bottom 

xC10  1 0.00200 0 0.99308 0.00232 0.00303 

xC14  0 0.94702 0 0.00289 0.93997 0.00304 
xC16  0 0.05098 1 0.00288 0.05488 0.99412 

Temp(K)  441 481 502 440 484 503 

 

Software Comparison: 

Generally, modelling tools for modelling of chemical processes can be categorized into two groups. The 

first group consists of readily made models with preprogramed equation systems and appropriate numerical 

solution algorithms. Also known as the sequential modelling approach such as Aspen Plus, Aspen HYSYS, and 

CHEMCAD, are some examples of software belonging to this group. Using this softwares for modelling of 

chemical processes can be done easily, however, it lacks in the transparency of equations involved(Stutzman et 

al., 1982). Another software may be needed to build the equations model before embedding it into those 

software environments. One such example is Aspen custom modeler (ACM). The second group or the equation 

oriented modelling provides a modelling environment based on their own programming language. The users are 

free to define their own equation systems by writing their own code using a specifically defined programming 

language. Moreover, these tools are suitable for the creation of customized models. Some examples of these 

tools are gProms, Aspen Custom Modeler (ACM), GAMS and MATLAB (Kuntsche et al., 2011b). Table 3 

shows the comparison between MOSAIC, modelling tools based on the programming language (gProms, ACM, 

GAMS, MATLAB, C++, and Fortran), and sequential modelling approach (Aspen plus and Aspen HYSYS). 

Table 3 can be used as a guideline for choosing MOSAIC for any modelling and simulation work. 

 
Table 3: Comparison of MOSAIC with other modelling tools which based on programming language, and Aspen technology. 

 MOSAIC gProms, 
ACM, 

GAMS, 

MATLAB, 
C++, and 

Fortran  

Aspen 
plus, 

Aspen 

hysys 

Notes 

Modelling at 
documentation 

level 

Available - - 

Modelling by using MOSAIC can be done at the documentation 

level. Since the equations are written in LaTeX documentary 
language, it has similar readability as the documentation level. 

In addition, coding is not required for modelling using 

MOSAIC. 
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Reuse of model 

elements 
Available 

Partially 

available 
- 

The reuse of model elements by MOSAIC is more systematic 

and organized. The users can either reuse the notation, 

equations, functions, and variables settings easily. 

Code generation Available 
Not 
complete 

- 

Code generation by MOSAIC is a lot more complete. MOSAIC 

allows users to generate the code and run their models in many 

different environments. 

Centralized 

internet database 

capability 

Available - - 

MOSAIC allows users to share their work over the internet 

more easily. The shared work can be viewed or written by the 

person that users shared to. 

Degree of 
freedom analysis 

Available - - 

The degree of freedom analysis can be done automatically by 
MOSAIC. In order to generate code for evaluations, the degree 

of freedom must be zero. Hence, it is necessary for the model to 

have correct equations in an equation system and all errors must 
be corrected. 

Error 

identification 
Excellent Difficult - 

Since models in MOSAIC are written in LaTeX documentary 

language, it has high readability. Hence, users can identify 
errors more easily if they are making mistakes while keying in 

modelling equations. In addition, coding is not required by 

MOSAIC, hence it results in fewer errors and less effort. 

Language Documentary Programing - 

MOSAIC is using LaTeX documentary language in writing of 
modelling equations. LaTeX has high readability, unlike 

programming language, it is difficult to read and understand the 

coding. 

Readability Excellent Poor - 

LaTeX documentary language has much higher readability than 

programming languages since MOSAIC use two-dimensional 

symbolic language. 

Difficulty Medium Hard Easy 

Although without knowledge of coding in modelling, MOSAIC 

still allows users to do modelling without a doubt. The stages of 

modelling using MOSAIC are creating of notation, creating of 
equations, creating of functions, creating of equation system, 

creating of parameter object and creating of evaluation object. 

The most difficult part will be creating of functions, however, it 
can overcome easily once users know how it works. 

Transparency of 

model 
Excellent Excellent Poor 

All equations involved in modelling are known for MOSAIC. 

Besides that, given values of variables can also be determined. 

Building of 
customized model 

Capable Capable 
Not 
capable 

MOSAIC is similar to software like Matlab which is designed 
to build the customized model. 

 

Conclusion: 

This work presents an equation oriented modelling of DWC using MOSAIC. In order to obtain a good 

convergence and reliable results in modeling, it is important to have good guess initial values of iteration 

variables. Hence, based on the case study, the developed model simulation in MOSAIC agrees with data taken 

for the same process in Aspen Plus as an initial iteration values in MOSAIC. The results show that MOSAIC 

provide a good functionality in code generator that can translate the specified models into program code for 

Matlab. Using MOSAIC, the modelling approach does not require any written code as such it is much easier to 

learn and less prone to a programming error. In addition, the model formulation has the same readability as the 

documentation level. Besides that, reuse of model elements can be done effectively thus reduce the efforts of 

modelling. This work also compares the features between modelling in MOSAIC and programming language, as 

well as simulation work. Such comparison could help researchers to decide in using MOSAIC for any modelling 

work. 
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