Asymptotic Distribution of UMVUE of rth Central Moments in Bernoulli Distribution

Narges Abbasi

Department of Statistics, Payame Noor University, Shiraz Centre 71365-944, Shiraz, Iran.

Abstract: In theory of U-statistics, for determine of asymptotic distribution of them, two theorems are considered. Under certain conditions, the distribution of U-statistics tend to normal distribution or linear combination of independent chi-square random variables. In this article, by a sample from Bernoulli distribution with p parameter, we determine asymptotic distribution of U-statistic for r h central moment.

key words: Asymptotic distribution, Central moments, Point estimation, U-Statistic.

INTRODUCTION

In the theory of U-statistics, we consider a functional θ defined on a set F distribution functions on R:

$$\theta = \theta(F) F \in F$$
. The $\theta \in \theta(F)$ estimated by using a sample from the random variables $X_1, X_2, ..., X_n$

which are independently and identically distributed with distribution function F. Halmos (1946), proved that the functional θ admits an unbiased estimator if and only if there is a function h of k variables such that

$$\theta = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} h(x_1, \dots, x_k) Fd(x_1) Fd(x_2) \dots Fd(x_n)$$
(1)

A functional satisfying equation (1) for some function h is called a regular statistical functional of degree k, and the function h is called the kernel of the functional. If a functional can be written as a regular statistical functional then optimal unbiased estimators can be constructed.

For a distribution function F let $\mu_r = \int_{-\infty}^{+\infty} x^r dF$, the r th moment about 0, and let $\mu_r = \int_{-\infty}^{+\infty} (x - \mu)^r dF$, the rth central moment or

$$\mu_r = \sum_{i=0}^{r-2} {r \choose i} (-1)^i \, \mu_1^i E(X^{r-i}) + (-1)^{r-1} (r-1) \, \mu_1^{n'}. \tag{2}$$

An unbiased estimator for μ_r can be write

$$h_r^*(X_1, ..., X_r) = \sum_{i=1}^{r-2} \binom{r}{i} (-1)^i X_1^{r-i} \prod_{j=2}^{i+1} X_j + (-1)^{r-1} \prod_{j=1}^r X_j.$$

 $h_{\!\scriptscriptstylem{\mu}}^{\!\scriptscriptstylem{\pi}}$ is not symmetric about its arguments, but it appears useful in next sections.

Heffernan, P.M. (1997). obtained an estimator of the r th central moment of a distribution, which unbiased for all distributions for which the first r moments exits. There is a unique symmetric unbiased estimator of u

$$U_r(x_1,...,x_n) = \frac{(n-r)!}{n!} \sum h_r(x_{i_1},...,x_{i_n}),$$

where the sum extends over all $\frac{(n-r)!}{n!}$ permutations $(i_1,...,i_r)$ of r distinct integers chosen from 1, 2,...,n and

$$h_r(x_{i_1},\ldots,x_{i_r}) = \sum_{i=1}^{r-2} (-1)^i \frac{1}{r-i} \sum_i x_{i_1}^{r-i} x_{i_2} \ldots x_{i_{r+1}} + (-1)^{r-i} (r-1) x_1 \cdots x_r$$

Corresponding Author: Narges Abbasi, Department of Statistics, Payame Noor University, Shiraz Centre 71365-944, Shiraz, Iran.

E-mail: abbasi@spnu.ac.ir

where the second summation is over $i_1, \dots, i_{r-1} = 1$ to r with $i_1 \neq i_2 \neq \dots \neq i_{r+1}$ and $i_1 \leq i_2 \leq \dots \leq i_{r+1}$

 $U_{r}(x_{1},...,x_{n})$ has, among all estimators which are unbiased for all F in F, minimum variance for each F

in F. This follows from theorem 3 of section 1.1 of Lee(1990). U_r does not have a presentation of the role of sample moments on estimation of μ_r , obviously.

In Bernoulli family, the problem has some changes. We know $Y = \sum X$ is sufficient statistic for p.

$$\widehat{p}^{m} = E(\prod_{i=1}^{m} X_{i} \mid Y = y) = \frac{\binom{n-m}{y-m}}{\binom{n}{y}}; \qquad y \ge m, \quad n \ge m.$$

Again, rewrite the r th central moment has the following form

$$\mu_r = \sum_{i=0}^{r-2} \binom{r}{i} (-1)^i p^{i+1} + (-1)^{r-1} (r-1) p^r.$$

So the UMVUE for μ_r equals to

$$U_{p,r} = E(X - \mu)^r$$

$$= \frac{1}{\binom{n}{p}} \left\{ \sum_{i=0}^{r-2} \binom{r}{i} (-1)^r \binom{n-i-1}{y-i-1} \right\} + (-1)^{r-1} (r-1) \binom{n-r}{y-r}.$$
(3)

This result is the answer well-known problem whatever it can be find in most inference books [Rohatgi 1976]. But here the main rule of $U_{p,r}$ is identity with U_r and it is simplified to the formula of U_r . In special cases, we can see

$$U_{n,2} = \frac{n}{n-1}M_2,$$

$$U_{n,3} = \frac{n^2}{(n-1)(n-2)}M_3,$$

where M_1 and M_2 are 2th and 3th sample central moments respectively.

In this article, section 2 has review of history of asymptotic distribution of U-statistics, and save about two theorems which we apply to obtain main result. Section 3 deals to asymptotic distribution of $U_{p,r}$.

Asymptotic distribution of U-Statistic:

Consider a symmetric kernel h satisfying $E_{\mu}(h^{3}(X_{1},...,X_{n})) < \infty$

We shall make use of the function h_e , and \tilde{h}_k , $h_k=h$ and for $1\leq e\leq k-1$,

$$h_{e} = E_{e}(h(x_{1},...,x_{e},X_{e+1},...,X_{k})).$$

that $\tilde{h} = h - \theta$ $\tilde{h} = h - \theta$ Define $\zeta_0^{\epsilon} = 0$ and, for $1 \le \epsilon \le k-1$

$$\xi_c = \operatorname{var}_F(h_c(X_1, \dots, X_c)).$$

The following results were established by Hoeffding (1948).

Theorem 1. If
$$E_r h^2 < \infty$$
 and $\xi_1 > 0$ then $\sqrt{n}(U_n - \theta) \stackrel{D}{\rightarrow} N(0, k^2 \xi_1)$.

For the function $\tilde{h}_1(x_1, x_2)$ associated with the kernel $h = h(x_1, ..., x_k)$ $(k \ge 2)$ an operator A on the function space $L_1(R, F)$ was defined by

$$Ag(x) = \int_{-\infty}^{+\infty} h_1(x, y)g(y)dF(y), \quad x \in \Re, \quad g \in L_1.$$
(4)

That is, A takes a function g into a new function Ag. In connection with any such operator A, the associated eigenvalues $\lambda_1, \lambda_2, \ldots$ to be the real number λ (not necessarily distinct) corresponding to the distinct solutions g, g, \ldots of the equation $Ag - \lambda g = 0$.

The following theorem was established (Korolyuk and Borovshich (1994)).

Theorem 2: If $E_F h^2 \le \infty$ and $\xi_1 = 0 \le \xi_2$, then $\pi(U_n - \theta) \xrightarrow{n} \frac{k(k-1)}{2} Y$ where Y is a random variable of the form $Y = \sum_{j=1}^{\infty} \lambda_j (\chi_j^2 - 1)$, where $\chi_1^2, \chi_2^2, \dots$ are independent χ^2 variables.

The essential difference between theorem 1 and theorem 2 in their conditions is about the value of ξ_1 . This point will tend to finding the group of distributions that they satisfy in conditions of theorem 2.

RESULTS AND DISCUSSION

Abbasi (2008) for r=3,4 found some distribution which they satisfied on theorem 2. But it is interesting that for even central moments for Bernoulli with $p=\frac{1}{2}$ theorem 2 always occurs. Theorem 3 states this result.

Theorem 3. If $X_1, ..., X_n$ are iid Bernoulli random variables, $Y = \sum_{i=1}^n X_i$ and $U_{p,r}$ is given in (3) formula then

i)
$$\sqrt{n}(U_{p_r} - \mu_r) \to N(0, r^2 \xi_1); \quad r \in \mathbb{N}, p \neq \frac{1}{2},$$

ii)
$$\sqrt{n}U_{p,r} \to N(0, 2^{-2r-1}(r-1)^2); \quad r \text{ odd}, p = \frac{1}{2},$$

i)
$$n(U_{p,r}-2^{-r}) \to 2^{-r-1}r(r-3)(\chi_1^2-1); r \text{ even, } p=\frac{1}{2}.$$

Proof. The parts of i and ii will be obtained from theorem 1. Using rules of counting, and change k_r^* to

 \tilde{k}_r as a symmetric function with respect to arguments. According to section 2

$$\begin{split} \tilde{\mathcal{H}}_{1}(x) &= \frac{1}{r} \left\{ \sum_{j=0}^{r-2} \binom{r}{j} (-1)^{j} x^{r-j} p^{j} \right] + \left[x \sum_{j=0}^{r-2} \binom{r}{j} (-1)^{j} p^{j} j \right] \\ &+ \left[\sum_{j=0}^{r-2} \binom{r}{j} (-1)^{j} p^{j+1} (r-1-j) \right] + (-1)^{r-1} x p^{r-1} (r-1) - p^{r}. \end{split}$$

Under Bernoulli distribution the variance of \tilde{h}_1 will be obtained $\xi_1 = \operatorname{var}(\tilde{h}_1(X))$

$$\begin{split} &= \frac{1}{p(1-p)r^2} [-(1-p)^r p^2 r + (1-p)^r p - (1-p)^r p^2 \\ &+ (-1)^r p^r r + 2(-1)^{r+} p^{r+} r - (-1)^r p^{r+} + (-1)^r p^{r+} r + (-1)^r p^{r+}]^2; \qquad p \neq \frac{1}{2}, \\ &= \begin{cases} \frac{(r-1)^2}{r^2} 2^{-2r-1} & r & is \ odd, \quad p = \frac{1}{2} \\ 0 & r & is \ even, \quad p = \frac{1}{2} \end{cases} \end{split}$$

From the above results, for r even, and $p = \frac{1}{2}$ the ξ_1 equals to zero. That is the conditions of theorem 1 was failed and we must apply to theorem 2. By similar method that for finding the $\tilde{h}_1(x)$ used more calculation to obtain $\tilde{h}_2(x,y)$

$$\begin{split} & f_{j}(x,y) = \frac{1}{r(r-1)} \{ \left[\sum_{j=0}^{r-2} {r \choose j} (-1)^{j} x^{-j} p^{j} (r-1-j) \right] \\ & + \left[\sum_{j=0}^{r-2} {r \choose j} (-1)^{j} y^{r-j} p^{j} (r-1-j) \right] \\ & + \left[\sum_{j=0}^{r-2} {r \choose j} (-1)^{j} xy p^{j-1} (j-1) \right] \\ & + \left[\sum_{j=0}^{r-2} {r \choose j} (-1)^{j} x^{r-j} y p^{j-1} j \right] + \left[\sum_{j=0}^{r-2} {r \choose j} (-1)^{j} y^{r-j} x p^{j-1} j \right] \\ & + \left[\sum_{j=0}^{r-2} {r \choose j} (-1)^{j} x p^{j} (r-1-j) \right] + \left[\sum_{j=0}^{r-2} {r \choose j} (-1)^{j} y p^{j} (r-1-j) \right] \\ & + \left[\sum_{j=0}^{r-2} {r \choose j} (-1)^{j} p^{j+1} (r-1-j) (r-2-j) \right] + (-1)^{r-1} x y p^{r-2} (r-1) - p^{r}. \end{split}$$

Consider $g(x) = \sum_{i=0}^{r} a_i$ and the system of equation (4).

$$\lambda g(x) = \frac{1}{2}\tilde{h}_2(x, 0) g(0) + \frac{1}{2}\tilde{h}_2(x, 1) g(0); \qquad x \in R,$$

with

$$\begin{split} \tilde{h}_2(x,0) &= \frac{1}{r(r-1)} \{ \left[\sum_{j=0}^{r-2} \binom{r}{j} (-1)^j x^{r-j} p^j (r-1-j) \right] \\ &+ \left[\sum_{j=1}^{r-2} \binom{r}{j} (-1)^j x p^j (r-1-j) \right] + \\ &\left[\sum_{j=0}^{r-3} \binom{r}{j} (-1)^j p^{j+1} (r-1-j) (r-2-j) \right] \} - p^r, \end{split}$$

$$\begin{split} \tilde{h}_{i}(x,1) &= \frac{1}{r(r-1)} \{ \left[\sum_{j=0}^{r-1} {r \choose j} (-1)^{j} x^{j-1} p^{j} (r-1-j) \right] \\ &+ \left[\sum_{j=0}^{r-1} {r \choose j} (-1)^{j} p^{j} (r-1-j) \right] \\ &+ \left[\sum_{j=0}^{r-1} {r \choose j} (-1)^{j} x p^{j-1} (j-1) \right] \\ &+ \left[\sum_{j=0}^{r-1} {r \choose j} (-1)^{j} x^{j-1} p^{j-1} j \right] + \left[\sum_{j=0}^{r-1} {r \choose j} (-1)^{j} x p^{j-1} j \right] \\ &+ \left[\sum_{j=0}^{r-1} {r \choose j} (-1)^{j} x p^{j} (r-1-j) \right] + \left[\sum_{j=0}^{r-1} {r \choose j} (-1)^{j} p^{j} (r-1-j) \right] \\ &+ \left[\sum_{j=0}^{r-1} {r \choose j} (-1)^{j} p^{j-1} (r-1-j) (r-2-j) \right] + (-1)^{r-1} x p^{r-2} (r-1) - p^{r}, \end{split}$$

or equivalently,

$$\begin{split} 2r(r-1)\lambda a_{i-j} &= \left[\sum_{j=1}^{n-2} {r \choose j} (-1)^j p^j (r-1-j)\right] a_{ij} \\ &+ \left\{\sum_{j=1}^{n-2} {r \choose j} (-1)^j p^j (r-1-j)\right] \\ &+ \left[\sum_{j=1}^{n-2} {r \choose j} (-1)^j p^{j-1} j\right] \sum_{j=1}^{n} a_{j} \qquad j=0,1,...,r-2. \\ \\ 2r(r-1)\lambda a_{ij} &= \left[\left[\sum_{j=1}^{n-2} {r \choose j} (-1)^j p^j \left(r-1-j\right)\right]\right] a_{ij} + \left\{\sum_{j=2}^{n-2} {r \choose j} (-1)^j p^{j-1} (j-1)\right] \\ &+ \left[\sum_{j=1}^{n-2} {r \choose j} (-1)^j p^{j-1} j\right] + \left[\sum_{j=1}^{n-2} {r \choose j} (-1)^j p^j \left(r-1-j\right)\right] \\ &+ r(r-1)(-1)^{n-1} p^{n-2} \left(r-1\right) \sum_{j=1}^{n-2} a_{ij} \end{split}$$

Replace $p = \frac{1}{2}$. The answer of above equation is

$$\lambda = \frac{2^{-r}(r-3)}{(r-1)}.$$

This completes the proof of theorem 3.

REFERENCES

Abbasi, N., 2008. On Limiting Distributions of UMVUE of Central Moments. World Applied Sciences Journal. Forthcoming.

Halmos, P.R., 1946. The Theory of Unbiased Estimation. Ann. Math. Statist., 17: 34-43.

Heffernan, P.M., 1996. Unbiased Estimation of Central Moments By Using U-Statistics. *Royal Statistical Society*, B, 59(4): 861-863.

Hoeffding, W., 1948. A Class of Statistics With asymptotically Normal Distribution. Ann. Math. Statist., 19: 293-325.

Korolyuk, V.S. and V. Borovskich, Yu, 1994. *Theory of U-Statistics*. Kluwer Academic Publishers, Dordrecht-Boston-London.

Lee, A.J., 1990. U-statistics: Theory and Practice. New York, Dekker,

Rohatgi, V.K., 1976. An Introduction to Probability Theory and Mathematics Statistics. John Wiley and Sons,