
Australian Journal of Basic and Applied Sciences, 5(10): 1-8, 2011 
ISSN 1991-8178 

Corresponding Author: Bassem Raafat, Biophysics group, Genetic Engineering and Biotechnology Division. National 
                                          Research Centre, Cairo, Egypt. Current address: College of Medical Science, Taif University, 
                                          KSA. 
                                           E-mail: bassemraafat@hotmail.com 

1 

Human Telomerase Reverse Transcriptase (hTERT) Gene Expression in Rheumatoid 
Arthritis (RA) Patients after Usage of Low Level Laser Therapy (LLLT) 

1,2Bassem M. Raafat, 3Samir W. Aziz, 3Noha A. Latif and 4Ahmed M. Hanafy 

1Biophysics group, Genetic Engineering and Biotechnology Division, National Research 
 Centre, Cairo, Egypt. 

2College of Applied Medical Sciences, Taif University, KSA 
3Biophysics group, Genetic Engineering and Biotechnology Division. National Research 

 Centre, Cairo, Egypt. 
4Rheumatology Department, Air Force Hospital, Cairo, Egypt 

 

Abstract: Purpose: This study aimed to study the effect of cold laser as a complementary drug to the 
regular anti-inflammatory drug protocols used in rheumatoid arthritis treatment. Design: Experiment 
was conducted on seventy five subjects with age range 50± 5 years. They were subdivided into three 
groups. The first group represented twenty normal adults (10 males, 10 females) within the same age 
range with no rheumatoid arthritis history. The second group represented 27 patients (13 males, 14 
females) treated with non steroid anti inflammatory drugs. The third groups represented 28 patients (13 
males and 15 females) treated with non steroid anti inflammatory drugs and subjected to soft laser 
irradiation produced from mid laser infra red medical instrument. Patients received laser sessions along 
four weeks every other day. The expression of the catalytic subunit of telomerase, hTERT, was 
measured in PBMC of RA patients and controls by using of RT-PCR quantification kit package Cat. 
No BSB04M1, for the determination of gene expression. Results: Both rheumatoid arthritis patients 
groups showed lower telomerase gene expression either those exposed to laser or not as compared to 
control. Gene expression enhancement was found in patients irradiated with laser combined with the 
anti-inflammatory protocol as compared to those did not receive cold laser irradiation. Conclusion: 
Cold laser irradiation in rheumatoid arthritis patients enhanced the hTERT gene expression that in role 
guarantees balanced DNA ends repair level. 

Key words:  Rheumatoid arthritis – telomerase – cold laser – anti-inflammatory protocols – Gene  
                       expression. 

 
INTRODUCTION 

 
 Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes irreversible destructions 
ofztendons, cartilage and bone (Zvaifler, 1995).  Despite many years of intensive investigation the etiology of 
this multifactorial disease has not been revealed yet.  The cause of rheumatoid arthritis is unknown. Even 
though infectious agents such as viruses, bacteria, and fungi have long been suspected, none has been proven as 
the cause. The cause of rheumatoid arthritis is a very active area of worldwide research. It is believed that the 
tendency to develop rheumatoid arthritis may be genetically inherited (hereditary). It is also suspected that 
certain infections or factors in the environment might trigger the activation of the immune system in susceptible 
individuals. This misdirected immune system then attacks the body's own tissues. This leads to inflammation in 
the joints and sometimes in various organs of the body, such as the lungs or eyes (Alvarez et al., 2005). 
 However, accumulating evidence indicates that RA is an autoimmune pathology in which T cells play a 
major role (Fox, 1997). With increasing disease duration a number of phenotypic and functional T cell defects 
have been described in RA including hyporesponsiveness of T cells to stimulation, a decline in naive CD4+ T 
cells and a disturbance in the naive T cell receptor (TCR) repertoire indicated by a loss of TCR diversity and 
clonal expansion of a proportion of T cells (Bakakos et al., 2002; Ponchel et al., 2002; Wagner et al., 1998). 
The capacity of lymphocytes to clonally expand may be mediated, at least in part, through the upregulation of 
telomerase (Marielle et al., 2005). 
 Telomerase is a large ribonucleoprotein complex that synthesizes telomere repeats to maintain telomere 
length at a species-specific level. Telomeres shorten progressively with every cell division due to the inability 
of DNA-polymerase to fully replicate the extreme ends of chromosomes, the so-called end-replication problem 
(Allsopp et al., 1995; Watson, 1972). This shortening of telomeres has been proposed to act as a mitotic clock 
that monitors cell division and provides a measure of the residual replicative capacity of cells (Harley et al., 
1990; Weng et al., 1998). Critically short telomeres may be the signal for replicative senescence and ultimately 
chromosomal instability in normal somatic cells (Allsopp et al., 1992; Vaziri et al., 1993). Telomere erosion 
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can however be prevented by upregulation or reactivation of telomerase (Vaziri and Benchimol, 1998; Bodnar 
et al., 1998). The two most important subunits are an endogenous RNA subunit, human Telomerase-associated 
RNA (hTR), which contains a 11-base template sequence for the synthesis of telomere DNA, and the protein 
catalytic subunit, human Telomerase Reverse Transcriptase (hTERT) with reverse transcriptase activity (Weng, 
2002). Telomerase is constitutively expressed in germ line cells and in the majority of malignant tumor cells, 
and is repressed in most human normal somatic cells (Shay and Wright, 1996). In some somatic cell 
populations, such as lymphocytes and hemopoietic stem cells, there is a highly regulated transient expression of 
telomerase (Broccoli et al., 1995). Telomerase activity has predominantly been studied in tumor cells, but it 
may also play a role in autoimmune diseases like RA (Marielle et al., 2005). 
 Low-level laser therapy (LLLT) (cold laser) is a medical and veterinary treatment that uses low-level lasers 
or light-emitting diodes to alter cellular function. LLLT is controversial in mainstream medicine with ongoing 
research to determine the ideal location of treatment (specifically whether LLLT is more appropriately used 
over nerves versus joints (Brosseau et al., 2005), dose, wavelength, timing, pulsing and duration (Huang et al., 
2009). The effects of LLLT appear to be limited to a specified set of wavelengths of laser (Bjordal et al., 2008), 
and administering LLLT below the dose range does not appear to be effective (Bjordal et al., 2003). Despite a 
lack of consensus over its ideal use, specific test and protocols for LLLT suggest it is effective in relieving 
short-term pain for rheumatoid arthritis (Brosseau et al., 2005), osteoarthritis, (Jamtvedt et al., 2007), acute and 
chronic neck pain, (Chow et al., 2009) tendinopathy, (Bjordal et al., 2008; Tumilty et al., 2010) and possibly 
chronic joint disorders (Bjordal et al., 2003). The evidence for LLLT being useful in the treatment of low back 
pain, (Yousefi-Nooraie et al., 2008; Middelkoop et al., 2010) dentistry (Cobb, 2006; Sculean et al., 2005) and 
wound healing is equivocal (Da Silva et al., 2010). 
 LLLT may reduce pain related to inflammation by lowering, in a dose-dependent manner, levels of 
prostaglandin E2, prostaglandin-endoperoxide synthase 2, interleukin 1-beta, and tumor necrosis factor-alpha, 
the cellular influx of neutrophil granulocytes, oxidative stress, edema, and bleeding. The appropriate dose 
appears to be between 0.3 and 19 joules per square centimeter (Bjordal et al., 2006). Another mechanism may 
be related to stimulation of mitochondrion to increase the production of adenosine triphosphate resulting in an 
increase in reactive oxygen species, which influences redox signalling, affecting intracellular homeostasis or the 
proliferation of cells (Tafur and Mills, 2008) The final enzyme in the production of ATP by the mitochondria, 
cytochrome c oxidase, does appear to accept energy from laser-level lights, making it a possible candidate for 
mediating the properties of laser therapy (Karu, 2008).  
 

MATERIALS AND METHODS 
 

 This study was conducted on 75 subjects with range 50 ± 5 years old. These subjects were subdivided into 
three groups. The first group represented twenty normal adults (10 males and 10 females) within the same age 
range with no rheumatoid arthritis history. The second group represented 27 patients (13 males, 14 females) 
treated with non steroid anti inflammatory drugs. The third groups represented 28 patients (13 males and 15 
females) treated with non steroid anti inflammatory drugs and subjected to cold laser produced from mid laser 
infra red medical instrument. Patients received laser sessions along four weeks every other day. Trigger points 
were irradiated, access points to the joint and striated muscles adjacent to relevant nerve roots. Irradiation 
sessions were carried out in the Air Force Hospital in Cairo after ethical approved from the National Research 
Center ethical committee.  
 All patients were subjected to detailed clinical history, past history and laying stress on compliant of 
patients, onset and course of diseases, the pattern of joint involvement and extra articular affection. Pregnant 
women and patients suffering from other inflammatory diseases were excluded. A pulsed diode laser, He-Ne 
mid laser with IR manufactured by space laser SRI was used. Turin with continuous emission visible light 632.8 
nm wavelength (Output power 5 mw, output divergence after lens 60 mRad), in coaxial associated with 2 infra 
red diodes of wave length 904 nm, each with the following specification: 
 1-Infra- red laser emitters: Peak output power = 5  10 w. Average output power = 5  (0.3 + 5) mw. Pulse 
width 180 nsec. Pulse frequency min. 200 Hz - Max. 4000 Hz. Output beam divergence 70 m Rad. Number of 
diodes = 5 
 2- I.R. Handles: Peak power = 10 W. Average output power = 3 mW (min.). Pulse duration 180 nsec. Pulse 
frequency 4000 Hz. Output beam divergence 70 mRad. 
 
Peripheral blood mononuclear cells (PBMC) isolation: 
 10ml of heparinized venous blood samples were used for isolation of peripheral blood mononuclear cells 
(PBMC) by density separation over 10 ml ficoll solution in 50 ml falcon tubes  then the tubes were centrifuged 
20 min at 1600rpm and we took the ring with white blood cells (buffy coat) without touching the ficoll using a 
sterile pipette tips.  Cells were used twice in 6 ml phosphate buffer saline PBS and centrifuge again at 1600rpm 
for 20 minutes to get cell pellets that were used for RNA isolation (Byum, 1968).  
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 Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder that may affect many tissues and 
organs, but principally attacks synovial joints. The process produces an inflammatory response of the synovium 
(synovitis) secondary to hyperplasia of synovial cells, excess synovial fluid, and the development of pannus in 
the synovium. The pathology of the disease process often leads to the destruction of articular cartilage and 
ankylosis of the joints. Rheumatoid arthritis can also produce diffuse inflammation in the lungs, pericardium, 
pleura, and sclera, and also nodular lesions, most common in subcutaneous tissue. Although the cause of 
rheumatoid arthritis is unknown, autoimmunity plays a pivotal role in both its chronicity and progression, and 
RA is considered a systemic autoimmune disease (Allsopp et al., 1995). 
 The factors that allow an abnormal immune response, once initiated, to become permanent and chronic, are 
becoming more clearly understood. The genetic association with HLA-DR4, as well as the newly discovered 
associations with the gene PTPN22 and with two additional genes (Plenge et al., 2007), all implicate altered 
thresholds in regulation of the adaptive immune response. It has also become clear from recent studies that these 
genetic factors may interact with the most clearly defined environmental risk factor for rheumatoid arthritis, 
namely cigarette smoking (Padyukov et al., 2004). Other environmental factors also appear to modulate the risk 
of acquiring RA, and hormonal factors in the individual may explain some features of the disease, such as the 
higher occurrence in women, the not-infrequent onset after child-birth, and the (slight) modulation of disease 
risk by hormonal medications. Exactly how altered regulatory thresholds allow the triggering of a specific 
autoimmune response remains uncertain. However, one possibility is that negative feedback mechanisms that 
normally maintain tolerance of self are overtaken by aberrant positive feedback mechanisms for certain antigens 
such as IgG Fc (bound by RF) and citrullinated fibrinogen (bound by ACPA) (Rubio et al., 2009). 
 Once the abnormal immune response has become established (which may take several years before any 
symptoms occur), plasma cells derived from B lymphocytes produce rheumatoid factors and (anti-circullinated 
protein antibody) ACPA of the IgG and IgM classes in large quantities. These are not deposited in the way that 
they are in systemic lupus. Rather, they appear to activate macrophages through Fc receptor and perhaps 
complement binding. This can contribute to inflammation of the synovium, in terms of edema, vasodilatation 
and infiltration by activated T-cells (mainly CD4 in nodular aggregates and CD8 in diffuse infiltrates). Synovial 
macrophages and dendritic cells further function as antigen presenting cells by expressing (myosin heavy chain) 
MHC class II molecules, leading to an established local immune reaction in the tissue. The disease progresses in 
concert with formation of granulation tissue at the edges of the synovial lining (pannus) with extensive 
angiogenesis and production of enzymes that cause tissue damage. Modern pharmacological treatments of RA 
target these mediators. Once the inflammatory reaction is established, the synovium thickens, the cartilage and 
the underlying bone begin to disintegrate and evidence of joint destruction accrues (Stefan et al., 2003). 
 In RA patients, telomere attrition in CD4 T cells is accelerated (Koetz et al., 2000 and Schonland et al., 
2003) by either proliferative stress or insufficient telomeric repair. Telomeres are not critically short and should 
not force T cells into cell cycle arrest or cell death. Nevertheless, defects in telomeric maintenance could affect 
broader cellular functions. An important consequence of telomere shortening is the induction of replicative 
senescence, a state in which the cell is viable but prohibited from further cell divisions (Aubert and Lansdorp, 
2008). Telomeric lengthening and maintenance is facilitated by telomerase, an enzyme composed of a catalytic 
protein unit known as human telomerase reverse transcriptase (hTERT) and an RNA template complementary 
to the telomeric DNA (hTR) (McEachern et al., 2000). In most tissues, telomerase is strongly suppressed, but in 
T cells telomerase activity is dynamically regulated and coincides with periods of cellular expansion (Weng et 
al., 1996 and Hodes et al., 2002). Telomerase induction allows for telomere elongation, translating into 
lengthening of life span (Luiten et al., 2003; Roth et al. 2003 & 2005 and Rufer, 2001). How ongoing telomeric 
maintenance affects T cell proliferation and function before the state of a short and dysfunctional telomere is 
reached is currently not understood completely. 
 Hiroshi et al. (2009) reported that in RA, naïve CD4 T cells fail to up-regulate telomerase when primed 
through the TCR. Knockdown of hTERT in primary human T cells revealed a direct effect on cell survival, with 
telomerase insufficiency rendering T cells apoptosis susceptible. Naïve RA CD4 T cells were prone to die when 
driven into clonal expansion, impairing their clonal size. Apoptosis during this early phase in the T cell life 
cycle was Fas independent and mediated through the mitochondrial pathway. Ectopically expressed hTERT 
repaired apoptotic propensity of RA T cells. In essence, the enzyme telomerase is critically involved in 
determining life/death decisions in proliferating CD4 T cells. Telomerase insufficiency in RA T cells may lead 
to a defect in the homeostatic regulation of the T cell pool. 
 Telomerase insufficient T cells died from excessive apoptosis despite stability in telomeric length. By 
reinstating lost DNA telomeric sequences, telomerase protects cells from replicative senescence (Bodnar et al., 
1998) and may confer cellular immortality (Stewart and Weinberg, 2006). Transfer of hTERT into human 
mammary epithelial cells promotes spontaneous growth (Beliveau et al., 2007). In a recent report (Beliveau et 
al., 2007), the growth promoting ability of telomerase was p53 dependent, suggesting that the cell recognizes a 
shortened telomere as damaged DNA. 53BP1/phosphorylated histone H2AX foci appeared at chromosome ends 
long before telomeres were critically shortened indicating that telomeric dysfunction precedes erosion of 
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telomeric sequences and functionally affects the cell long before senescence. Gamma-H2AX has a role in early 
signaling of DNA damage (Rogakou et al., 1998) and, again, has been observed in foci at the telomeric ends 
(Hao et al., 2004). The detailed structure of telomeres in T cells as they pass through different life-cycles is 
unknown. Besides the premature loss of telomeric ends, telomere structure in RA T cells may be sufficiently 
disturbed to physically disrupt binding sites for essential proteins of the shelterin complex (De Lange, 2005) or 
may interrupt T-loop formation (Blackburn, 2001). 
 The question remains of how impaired telomerase induction and apoptotic hypersensitivity in naïve CD4 T 
cells is related to RA. Most important to consider is the impact of chronic T cell attrition on homeostatic control 
of the T cell compartment. Notably, the major risk factor for RA is advanced age; most patients are diagnosed 
during the second half of life. During this life period, naïve T cells are not replenished through thymic 
production but rather through autoproliferation (Slijepcevic, 2006). Failure to reach appropriate clonal size 
during priming must inevitably lead to smaller clonal sizes of memory cells. This scenario predicts that RA 
patients have difficulties maintaining a filled T cell pool and expose memory T cells to more and more 
replicative turnover. In essence, the entire T cell pool in RA is overaged, forcing the patient to generate immune 
responses with T cells that have essentially reached the end of their life span. Interestingly, senescent CD4 T 
cells acquire apoptotic resistance (Schirmer et al., 1998), endowing them with a survival advantage. If such 
enddifferentiated memory T cells stay alive, they will compete for space and further disadvantage incoming 
new cells. T cell senescence has also been identified as a pathway in atherosclerosis, particularly the unique 
inflammatory response precipitating plaque instability (Pryshchep, 2006 and Sato et al., 2006). Cardiovascular 
complications are now recognized as extra-articular manifestations of RA (Giles et al., 2006). Finally, 
dysfunction of naïve CD4 T cells puts the patient at risk for inadequate anti-pathogen responses, a complication 
well recognized within the spectrum of the rheumatoid syndrome (Doran et al., 2002). Implicating telomerase in 
T cells as an element of the pathogenic network in RA provides novel and exciting opportunities for therapeutic 
approaches in this chronic and as yet incurable disease. 
 Low level laser therapy (LLLT) is a light source treatment that generates light of a single wavelength. 
LLLT emits no heat, sound, or vibration. Instead of producing a thermal effect, LLLT may act via nonthermal 
or photochemical reactions in the cells, also referred to as photobiology or biostimulation, photobiomodulation, 
cold laser therapy. Laser radiation and monochromatic light may alter cell and tissue function. Laboratory 
studies suggest that irradiation stimulates collagen production, alters DNA synthesis, and improves the function 
of damaged neurological tissue (Cochrane Database, 2007). 
Red and near-infrared laser irradiation is reported to have a range of biological effects on cultured cells and 
different tissues, leading to the hypothesis that laser light can affect energy metabolism. Increased adenosine 
triphosphate (ATP) synthesis has been reported in cultured cells and rat brain tissue after irradiation at 632.8 nm 
and 830 nm, respectively (Kuo et al., 2010). 
 Cold laser is the type used in physical medicine as its depth of penetration is sufficient to produce a 
biological effect on deeper tissues without damaging them. The helium neon depth of penetration is up to 0.8 
mm directly and from 10 to 15 mm indirectly. Direct penetration refers to the characteristic properties of laser 
that have not been altered. In direct penetration, the light is transmitted into the deep tissues through 
hyperscopic absorption properties of the surrounding tissue. Once this occurs the coherent and non divergent 
properties of laser are altered. Therefore, the difference between the two field’s depths in due to the dispersion 
of light is tissue. It is therefore a superficial physical agent (more than 50 % of the energy is absorbed by tissue 
located less than 1 cm below the skin surface (Karen Adams et al., 2009). 
Laser action on cell proliferation may be explained by the direct effects of laser to increase the low oxygen 
concentration and necessary nutrients at the injured site. Light provides proliferative stimulus, having some 
effect on the system that are known to regulate cellular proliferation mainly (CAMP). The cyclic adenosine 
monophosphate system has been demonstrated to control biosynthesis of DNA and RNA (Rubio  et al., 2009). 
 Regarding the present work, cold laser irradiation was used as complementary therapy for the regular anti-
inflammatory drugs protocols applied for rheumatoid arthritis patients in the rheumatology department of Air 
Force Hospital in Cairo. Human telomerase reverse transcriptase gene expression was measured to investigate 
to what extend cold laser may affect the proliferation/apoptosis T cells decision.  
 Both patients groups either treated with anti-inflammatory drug protocols only or treated with the regular 
protocols plus cold laser irradiation session revealed lower human telomerase reverse transcriptase (hTERT) as 
compared to non rheumatoid arthritis patients. Gene expression enhancement was revealed in patients received 
cold laser irradiation session as compared to those did not receive cold laser irradiation. 
 In conclusion, establishing a better gene activity in patients received cold laser sessions as compared to 
those did not receive laser irradiation guaranteed a better telomere ends repairing process, that in role, save 
better proliferation to apoptosis balance of T cells in rheumatoid arthritis patients. 
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