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INTRODUCTION 
 

 Let { : 1}D z z   be the open unit disk in the complex plane C, and let { : 1}D z z   be the unit circle. 

Let ( )H D  be the space of all analytic functions on the unit disk D. For P in (0, )  the Hardy space Hp consists 

of analytical functions )(DHf  ( f in D  ) such that 
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 Each function f  in pH  has a finite radial limit (Heakan Hedenmalm et al., 2000),( Peter and Alexander, 

2004), which we denote by )(f , at almost every point   of the unit circle T. Furthermore, 
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H p
 for every f  in H P. 

 When ( 1)    in ),1(  and p in ),0(  the weighted Bergman space
( 1)

pA 
,( Heakan et al., 2000), (Kehe 

Zhu, 1990) Consists of analytic functions f  in H (D) such that 
( 1)

( 1)( ) ( )p

p p

A
D

f f z dA z
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 


   , where 

22 ( 1)
( 1) ( ) ( 1)(1 ) ( )dA z z dA z 

    
      and dA  is area measure on D normalized so that A(D)=1. 

 We now introduce the space  ( 1) ( 1) 0B      ( David and Desmond, 2000) of functions n

n
n zazf 






0

)(  

analytic in 1z , such that 2 2( 1)
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( 1)B 

is a Hilbert space with inner product ( 1)

0

, (1 ) n n
n

f g n a b 


 



   , where n

n
n zbzg 






0

)( . Obviously, 

the polynomials are dense in 
( 1)B 

, for each ( 1) 0    . 

 
A straight forward calculations shows that  
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For some positive constants 1c  and 2c  depending only on ( 1)   . 

 
 We have the following definition (see (David and Desmond, 2000)). 
 
Definition 1.1: 

 Let p in ),1(  and set tdtfxF
x


0

)()( , where f  is a non- negative measurable function on ),0(  . Then 
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For some constant c > 0 independent of f . If 
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
1 , the inequality takes the form 
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Where tdtfxG 



0

)()( . The best possible constants c  in (2) and (3) are equal and this common value was 

determined by Landau as
p

p
c






1
  . 

  
Relations on Inequalities of Hardy and Bergman Spaces: 
 Kehe Zhu (2004) consider the classical inequalities from (Peter Duren, 1970) to translate certain classical 
inequalities for Hardy spaces to inequalities for Bergman spaces, and then how to translate them back to the 
original inequalities for Hardy spaces. 
 The Fejer - Riesz inequality (Peter Duren, 1970). 
 
Theorem 2.1: 

Let p in ),0(  . Then  



 

2

0

1

1

)(
2

1
)( defxdxf

pip  for all pHf  , moreover the constant 
2

1  is best possible 

for each p . 

 The second is an inequality of Hardy (Peter Duren, 1970). 
 
Theorem 2.2: 

 Suppose that 





0

)(
n

n
n zazf is the Taylor series representation of a function in 1H , then

1

0 1 H
n

n f
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a
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



. 

Moreover, the constant   is best possible. 
 If finding the best possible constant is a concern, then Hardy's inequality is a special case of the following 
inequality. The third due to Hardy- Littlewood (Peter Duren, 1970). 
 
Theorem 2.3: 

 For each p  in ]2,0(  there exists a positive constant 
pc  such that  
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function n
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)(  in pH . 

 Another theorem of Hardy-Littlewood (Peter and Alexander, 2004). 
 
Theorem 2.4: 

(i) If p in )2,0( , then pHf   implies   p

n
p an 2  and     pp

n
n

p an

1

0

21

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 pHp fc  , where 

pc denotes a constant depending only on p . 

(ii) If p in ],2[  , then   p

n
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Theorem 2.5: 

 Let p in ),1(  and let 
1


p

p
q  be its conjugate exponent. 

(i) If p in (1,2], then pAf   implies that   q
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(ii) If p in ),2[  , then   q

n
q an1  implies that pAf  ; and q
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 We begin with the weighted quadratic factor Bergman space version of the Fejer-Riesz inequality. 
 
Theorem 2.6: 

 Suppose that p  in ),0(   and ( 1)    in ),1(  . Then 2
1

1
( 1)

1

(1 ) ( ) ( ) ( )
p p

D

x f x dx f z dA z 
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all f  in 
( 1)
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. 

 
Proof: 
 Let f  be a function in 

( 1)
pA 

. For each r  satisfying 10  r  the function 
rf  given by )(rzfz   is 

clearly in pH , so by Theorem 2.1.  
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 We multiply both sides of (4) by 2 2 ( 1)1
( 1) (1 )r r dr  


   , and integrate from 0 to 1 to obtain 
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A simple change of variables transforms the left hand side to yrx   which implies that. 
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we then use Fubini's theorem to rewrite this as: 
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For the right hand side we have: 
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From left and right hand sides we have  
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and since 2
1

2 2 ( 1) 11
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we conclude that 2
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We are not certain that the constant   in Theorem 2.6 is best possible for any fixed ( 1)    and p . However, 

because the constant
2

1 in Theorem2.1 is sharp. 

 The counterpart of weighted quadratic factor Hardy's inequality for weighted quadratic factor Bergman 
spaces is expressed by the next result.  
 
Theorem 2.7: 

 Suppose that ( 1)    in ),1(   and that 
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Proof: 
 For fixed r  in )1,0[  we first apply Hardy's inequality to the dilated function 

rf , which has the Taylor 
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 And then integrate the resulting inequality with respect to the measure 2 2 ( 1)( 1) (1 )r r dr      on the 

interval )1,0[ .  

 The right hand side implies that 
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And the left hand side shows that by letting sr 2  
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 The Hardy-Littlewood inequality also has its analogue in the weighted quadratic factor Bergman space 
setting.   
 
Theorem 2.8: 
 Suppose that p  in ]2,0(  and ( 1)    in ),1(  . If 
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Proof: 

 For fixed r  in )1,0[  the dilated function rf , which has the Taylor expansion we have  
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 Then integrate the resulting inequality with respect to the measure 2 2 ( 1)( 1) (1 )r r dr       on the 

interval )1,0[ .We have for the right hand side  
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For the left hand side we have by letting sr 2  
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from (9) and (10) we conclude that 
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Corollary 2.9: 
 Suppose that p  in ]2,0(  and ( 1)  in ),1(  . Then there exists a constant 0c   (depending on 

( 1)   and p ) such that 
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for every function 
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( 1)
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.  

 We now show how the inequalities for weighted quadratic factor Bergman spaces can be used to recover 
the original counterparts for Hardy spaces.  
 
Proposition 2.10: 
 Suppose that p in ),0(   and that f  is in pH .Then f  belongs to 
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 
    

 
1

2 2 ( 1)

0

2( 1) (1 )p p

p p

H H
f r r dr f        . 

 
 This shows that f  belongs to 

( 1)
pA 

 for all ( 1)    in ),1(   and that  

 

( 1)
( 1) 1

lim sup p pA H
f f

  
 

 

             (12) 

 

 on the other hand, for any 0  there exists some   in )1,0(  such that  





2

0

)(
2

1 p

H

pit
pfdtref  for all 

r  in )1,( . 

 It follows that 
( 1)

1 22
2 ( 1)

0 0

1
(1 ) ( )p

pp it

A
f r r f re dtdr

 


  



 
      

1
2 2 ( 1)2( 1)( ) (1 )p

p

H
f r r dr 



         

22 1( )(1 ) .p

p

H
f         

 

 Letting ( 1) 1 


   , we obtain
( 1)

( 1) 1

lim inf p p

p p

A H
f f

  


 
 

  . Since   is arbitrary, we must have   

( 1)
( 1) 1

lim inf p pA H
f f

  
 

 

 .           (13) 

 
 In combination with (12) and (13) completes the proof of the proposition.  
 
The Main Results: 
 Here we show the results of various relations between weighted quadratic factor Bergman spaces and Hardy 
spaces followed by a sharp estimate of an extrema of the best possible constant.  
 
Theorem 3.1: 
 Suppose that p  in ],0(   and ( 1)   in ],1(  , then  
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(i) 
( 1)

2
( 1)

0

( 1) p

p pp p
n A

n

n a K f
 

 








  for 
( 1)

pK  
, a constant depending on ( 1)    and p  and every function 







0

)(
n

n
n zazf  in 

( 1)
pA 

, Furthermore 

(ii) 
( 1)

( 1) pp

p

H A
f C f

 
 


  for 

( 1)
pC 

, a constant depending on ( 1)    and p  

(iii) 
( 1)

 ppH A
f C f

 
  where C depending on ( 1)   and p  

(iv) 
( 1)

( 1)p p
p

A H
f K f

 
 


   

 
Proof: 
 For ( 1)    in ),1(  , p  in ]2,0( and pHf    

 
(i)  For 
 

( 1) 3 2 ( 1) 1

0 0

( 1) ( 1) ( 1)
p pp p

n n
n n

n a n a n   
 

      

 

     ,                                   (14) 

 
 Then using Holder inequality and Corollary2.9, if p in )2,0(  then we have from (11) and (14) that 

 

( 1)

2
( 1)

0

( 1) p

p pp p
n A

n

n a K f
 

 








    

where,
( 1) ( 1)

p c
K

r     ,(c depend on ( 1)   and p ) and 

1

2( 1) 1
0

1

( 1)

p
p

p

n

r
n

   



  


 
   

  
  

(ii) If p in ],0[  then using Theorem2.4 (ii) we have, 
1

( 1) 3

0

( 1)p

ppp
p nH

n

f c n a 


  



   
 
         (15) 

Hence from (15) and (i) we have
( 1)

( 1) pp
p

H A
f c f

 
 


 , where  

1

( 1) ( 1)
p p p

pc c K      

 
(iii) From the first part of the proof of Proposition2.10 we can find, for a suitable constant C which depend 

on ( 1)   and p , that 

( 1)
 ppH A

f C f
 

  

 
(iv) It is easily find, from Proposition2.10, that 

( 1)
( 1)p p

p

A H
f K f

 
 


  for a suitable constant 

( 1) 0pK   . 

 
Theorem 3.2: 
 Suppose that p in ),0(  , b in ),1(  ,  a0  and ( 1)   in ),1(  , for the extrema of a best possible 

pc  with a  -area of 
( 1)

pA 
we have 0.5998pc  . 

 
Proof: 
 For(see Definition1.1) 
 

2
1

1
( 1)

1

(1 ) ( ) ( ) ( )
p p

p

D

x f x dx c f z dA z 
 

 




   , and  
( 1)

pf A  . 

 
Let  ( 1) b( ) (1 )af x x     , Theorem 2.6 gives  

 
2

1 1
1 ( 1) 1

1 1

2
(1 ) (1 ) (1 )

k
pa b kx x dx x dx

k
       

 

      , where 
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( 1)(1  ) (2  )k a p b p      , and 
k

2



k

pc  . 

 
 By using simple computations, and setting ( 1)    instead of  , we have for the extrema (see the figure) 

that 

1

ln 22 2
.ln 2 0.5998

 k

k

k  
     at 4427.1

2ln

1
k   

 
Remark 3.3: 

 For example, in Theorem3.2, if we take,  
( 1)

( 1)
( )

1 ( 1) z

z
f z 

 
 
 


 

, and for 1  ,  0  bap  then we can 

show that 2
1

1

1

8
(1 ) ( )

3
p

x f x dx  



  , and 

2
22 ( 1) 2

( 1)

0

( 1)
( ) ( ) ( 1)(1 ) ( ) 2

1 ( 1) 
p

D

z
f z dA z z dA z

z


 

 
    

 




 
    

   . 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1: Graph of the fucntion: Φ (k) = 
k2

xk
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