
Australian Journal of Basic and Applied Sciences, 5(10): 1343-1351, 20115 
ISSN 1991-8178 

Corresponding Author: Homayun Motameni, Department of Computer Engineering, Sari Branch, Islamic Azad  
                                         University, Sari, Iran. 
                                     E-mail: motameni@iausari.ac.ir 

1343 

Analysis and Simulation Object Oriented Software by Coloured Petri Nets 
 

1Homayun Motameni, 2Ahmad Farahi, 3Esmaeil Mirzaeian, 4Samad Ghaderi Mojaveri  

 
1Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran. 

2Faculty Member of IT and Communication Department, Payam Noor University,Tehran, Iran. 
3Department of IT and Communication, Payam Noor University,Tehran, Iran. 
4Department of IT and Communication, Payam Noor University,Tehran, Iran. 

 
Abstract: High level Petri Nets have recently drawn the attention of researchers for use in formalizing UML in 
order to perform dynamic analysis and simulation of complex software systems. This paper presents a method 
for constructing Petri Net models from UML models based on Coloured Petri Nets (CPN). By mapping the 
specification written in UML to CPN, This method results in a Petri net model with remarkable coverage of all 
instances of objects from different classes in the same class hierarchy. Proposed method has considered net-
explosion problem which make this method applicable for large scale systems with vast number of simultaneous 
objects. Such Net can be used to check behavioural properties of a system at the design stage. A case study is 
also presented to show the benefit of our method and resulting Net is implemented in CPN-Tools. 
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INTRODUCTION 

 
 Software analysis and testing is a crucial activity to guarantee the quality and the reliability of the software. 
It is often said that the cost for correcting an error after software release is four times more than doing an error 
found at testing phase, and even 50 times more than at design phase (Pressman 2001: Zhu, Hall and May 1997) 
thus being able to simulate the system in the early phase of system development will speed up the test phase and 
increases the reliability. Object-oriented (OO) approach is one of the approaches to developing software 
efficiently, that is enabling us to reduce or eliminate some typical problems of procedural software, but may 
introduce new problems that can result in classes of faults hardly addressable with traditional testing techniques 
(Barbey and Strohmeier 1994: Martena, Orso and Pezze 2002). In particular, state-dependent faults tend to 
occur more frequently in OO software than in procedural software. Almost all objects have an associated state, 
and the behavior of a member function invoked on an object typically depends on the object's state. Such faults 
can be very difficult to reveal because they cause failures only when the objects are exercised in particular states 
(Li and Wong 2002).  
 One of the most important issues in OO software analysis is system simulation, which ensures class 
implementations work properly. There have been some analysis and test methods proposed in the literature. 
Most of them are based on Extended Finite State Machine (EFSM) models, such as (Hierons Kim and Ural 
2002: Gong and Li 2008: Motameni  Movaghar 2007). However, these models are only a program verification 
technique, and produce events by observing a carefully chosen path in the EFSM to confirm the correctness of 
the traversed transitions in the path. A method for generating test cases that detects the given faults is proposed 
in (Motameni Movaghar 2007). In our previous researches we have presented transformational patterns for 
UML state and Activity diagrams and also methods for evaluating some qualitative parameters (Motameni et al., 
2008; Peterson et al., 1981). 
 In this paper, we propose a new approach to OO software simulation by mapping the specification written 
in UML to CPN. In order to overcome net-explosion problem we adopt the idea proposed in (Bokhari et al., 
2005). we picked UML statechart rather than state transition diagram (STD) and we introduce rules to 
make special tokens named Object Token (OT) that covers all objects instead of simple symbolic tokens. 
These changes enable us to introduce a new algorithm to mapping UML statechart to CPN which is capable of 
covering all instances of objects from different classes in the same hierarchy. A case study is presented to 
show the benefit of our approach and resulting Net is implemented in CPN-Tools. 
 The rest of the paper is organized as follows. The next section is an introduction to CPN and UML 
Statecharts. In section 2, we show the basic idea of translating statechart to CPN. Section 3 presents the steps of 
our translation technique and its mapping algorithm. Section 4 presents a simplified case study of a banking 
system account and its analysis by using the existing tool of CPN, called CPN-Tools, and is also presented. In 
section 5, conclusion and future work is presented. 
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Converting Uml Statechart To Cpn: 
 In this section we introduce some definitions which are essential in Object Token concept and its structure. 
Detailed steps and mapping algorithm are also presented.  

 
Definitions: 
 In OO systems object state is the only difference between instances of one class and it depends on value of 
its properties; therefore object data structure plays important role in OO software system simulation. Other class 
member such as methods can be implemented once and can be used for all instance of under simulating objects. 
To present the data structure used in our mapping method, we categorized the data member of class in two 
categories. 
 Definition 1. Sensitive data member is the one that changes in its value and may cause the object to change 
its state. For example in banking account system changes that make the data member balance to negative cause 
the account to go to overdrawn state as it is shown in figure 5. 
 Definition 2. Sensitive method is the one that can change the sensitive data member directly or indirectly. 
For example in banking account system, a method such as deposit is considered sensitive method as long as it 
can change the sensitive data member balance. 
 Definition 3.  Suppose that S is a typical state in statechart then pre[S] refers to all transitions that enters to 
state S and next[S] refers to all transitions that leave state S.  
 
Object Token: 
 In order to cover all objects in the final CPN a special type of token must be constructed that make it 
possible to distinguish different type of bject. To handle complicated behaviour of OO systems such as 
polymorphism and dynamic binding, we introduce a set of sensetive data member of all classes in record format 
of CPN color-set. We also add essential item in it named Type whose system-type is enum color-set, so we can 
use it to identify different type of objects during system simulation. It is also useful to apply type constraint in 
our method. Other optional items can be added to this record when we need to save more information of each 
object. We refer to this token as Object Token (OT) and variables of this type as ot. Object Token and its 
defined variables are the only tokens that flow in the generate net. When ot passes a transition or an arc, the 
simulated event changes its content values by calling defined function in CPN. 
 The overall view of mapping process is shown in    figure 4. 
 

 
 
Fig. 4: Our mapping process. 
 
Mapping to CPN: 
 In this section we present our mapping method in order to obtain single and optimized CPN with least 
number of CPN items based on specifications written for related classes in same hierarchy. This method uses 
statecharts of these classes. The mapping includes the following steps:  
 
Step 1: 
 This step consist of collecting all states in statechart of class I as. Then we construct comSet as the set of all 
common sates in all generated  and sumSet as set sum of all generated  and we also must construct another set 
for exclusive states in each statechart of typical class I as. 
 
Step 2: 
 Iin this step we use the generated sets from step1 to construct CPN, other type of sets are required in this 
step such as  and  that are defined as Definition 3. 
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Fig. 5: Account Class of Banking system. 
 
 Statecharts of these classes is also presented in figure 6. 
 We mentioned earlier that Object Token can be constructed from sensitive data member of all available 
classes in the same hierarchy. This information can be extracted from class diagram, such as figure 5. 
 According to definition 1 and Object Token concept, we construct Object Token in CPN-ML standard as 
follow: 

 
 Colset Type = with Credit | Saving; 
 Colset Account = record Accno:INT * B:INT *  
                         InvB:INT *AT:Type; 

 
 The Account colset is a record with two sensitive data member B (Balance) and InvB (Investment Balance) 
plus Type field. Another optional field (Accno) is added to enable us to identify different objects from same 
Type. 
 

 
 
Fig. 6: Statecharts of two related classes. 
  
 Resulting CPN by applying our proposed algorithm to statecharts is implemented in CPN-Tools and is 
shown in figure 7. 
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Fig. 7: Top Level CPN 

 
 In order to show the final CPN we implemented it in multi-level form to make it easy to understand. It is 
shown in figure 8-10. 

 
 
Fig. 8: Sub-Level working 

 
 To analyze the behavior and to generate system test data, at first we should generate State Space Graph 
(SSG) from the CPN. The SSG expresses traces of the marking of a CPN, i.e. tokens on places.  

 
conclusion and future works: 
 High level Petri Nets have recently drawn the attention of researchers for use in formalizing UML in order 
to perform dynamic analysis and simulation of complex software systems. In this paper a method for 
constructing Petri Net models from UML models based on Coloured Petri Nets (CPN) is presented. By mapping 
the specification written in UML to CPN, This method results in a Petri net model with remarkable coverage of 
all instances of objects from different classes in the same class hierarchy. The proposed method has considered 
net-explosion problem which make this method applicable for large scale systems with vast number of 
simultaneous objects. Such Net can be used to check behavioural properties of a system at the design stage. Our 
work in this paper considers only generalization relationship between classes. We are investigating to expand 
our method to cover association and aggregation relationship based on the extended version of Petri Nets.  
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Fig. 9: Sub-Level Investment. 

 
 A node and an arc in the graph represent a marking and a firing of a transition respectively. SSG can be 
automatically generated and analyzed by existing tools such as CPN-Tools and ASAP (Ascoveco State-Space 
Analysis Platform-CPN group). 

 

 
 
Fig. 10: Sub-Level Overdrawn 

 
REFERENCES 

 
Pressman, R.S., 2001. ”Software Engineering – A Practitioner’s Approach Fifth Edition”, McGraw-Hill. 
Barbey, S. and A. Strohmeier, 1994. "The Problematic of Testing Object-Oriented Software", In 

Proceedings of the Second Conference on Software Quality Management, Edinburgh (Scotland, UK), vo1.2, 
July, pp: 411-426.  

Orso, A. and S. Silva, 1998. "Open Issues and Research Directions in Object-Oriented Testing". In 
Proceedings of the 4th International Conference on "Achieving Quality in Software: Software Quality in the 
Communication Society" (AQUIS'98), Venice.  

Martena, V., A. Orso and M. Pezze, 2002 "Interclass Testing of Object-Oriented Software", In Proceedings 
of the 8th IEEE international Conference on Engineering of Complex Computer Systems (ICECCS'02).  



Aust. J. Basic & Appl. Sci., 5(10): 1343-1351, 2011 

1351 

Li, J.1. and W.E. Wong, 2002. "Automatic Test Generation from Communicating Extended Finite State 
Machine (CEFSM)-Based Models", In Proceedings of the Fifth IEEE International Symposium on Object-
Oriented Real¬Time Distributed Computing (ISORC.02).  

Hierons, R.M., T.H. Kim and H. Ural, 2002. "Expanding an Extended Finite State Machine to Aid 
Testability", In Proceedings of the 26th Annual International Computer Software and Applications Conference 
(COMPSACp02), pp: 1-6.  

Duale, A.Y. and M. Uyar, 2004. "A Method Enabling Feasible Conformance Test Sequence Generation for 
EFSM Models", IEEE Transactions on Computers, 53(5): 614-627.  

Gong, H.F. and J. Li, 2008. "Generating Test Cases of Object-Oriented Software Based on EDPN and Its 
Mutant ", Proceedings - IEEE The 9th International Conference for Young Computer Scientists ,Hunan, ICYCS, 
pp.1112-1119.  

Motameni, H., A. Movaghar, 2007. "Mapping Activity Diagram to Petri Net: Application of Markov 
Theory for Analyzing Non-Functional Parameters", International Journal of Engineering, Transaction B: 
Applications, Volume 20, Number l, 65-76. 

Motameni, H., A. Movaghar, 2007. "Software Performance Evaluation from the UML  Activity diagram 
Using GSPN and Markov Chain" INFOCOMP, Journal of Computer Science. 

Motameni, H., A. Movaghar, B. Shirazi, M. Aminzadeh and H. Samadi, 2008. "Analysis Software with an 
object-oriented Petri net model", World Applied Science Journal, Volume 3. 

Motameni, H., A. Movaghar, M. Siasifar, H. Montazeri and A. Rezaei, 2008. "Analytic Evaluation on Petri 
Net by Using Markov Chain Theory to Achieve Optimized Models", World Applied Science Journal, Volume 3. 

Motameni, H., A. Movaghar, M. Ebrahimi, S. Peirovi and A. Khosrozadeh Ghomi, 2008. "Designing a 
Software Tool for Evaluating Qualitative Parameters ", World Applied Science Journal, Volume 3. 

Motameni, H., A. Movaghar, I. Daneshfar, H. Nematzadeh and J. Bakhshi, 2008. "Mapping to Convert 
Activity Diagram in Fuzzy UML to Fuzzy Petri Net", World Applied Science Journal, Volume 3. 

Motameni, H., A. Movaghar, B. Kardel, 2005. "Verifying and Evaluating UML Activity Diagrams by 
Converting to CPN ", Proc. of The International Symposium on Symbolic and Numeric Algorithm for Scientific 
Computing, Timisoara, Romania, September 25-29. 

Motameni, H., A. Movaghar, M. Zandakbari, 2006 "Deriving Performance Parameters from the Activity 
Diagram Using GSPN and Markov Chain", Proc. of International Conference on Computer Science and 
Software Development, National University, San Diego, California, June 27-29. 

Watanabe, H., H. Tokuoka, W. Wu, M. Saeki, 1998. "A Technique for Analyzing and Testing Object-
Oriented Software Using Colored Petri Nets," apsec, pp.182, Fifth Asia-Pacific Software Engineering 
Conference (APSEC'98). 

Peterson, J.L., 1981. "Petri Net Theory and the Modeling of Systems", Englewood Cliffs, New Jersey, 
Prentice Hall Inc.  

Jensen, K., 2006. "An introduction to the theoretical aspects of Colored  Petri Nets", Springer Berlin. 
Bokhari, A.A. and W.F.S. Poehlman, 2005. "Formalization of UML State-Charts: Approaches for Handling 

Composite States", Department of Computing & Software, McMaster University, Technical Report CAS 2005-
07-SP, pp: 10. 

Zhu, H., P. Hall and 1. May, 1997. "Software Unit Test Coverage and Adequacy", ACM Computing 
Surveys, April, pp: 366-427. 


