
Australian Journal of Basic and Applied Sciences, 5(10): 1343-1351, 20115
ISSN 1991-8178

Corresponding Author: Homayun Motameni, Department of Computer Engineering, Sari Branch, Islamic Azad
 University, Sari, Iran.
 E-mail: motameni@iausari.ac.ir

1343

Analysis and Simulation Object Oriented Software by Coloured Petri Nets

1Homayun Motameni, 2Ahmad Farahi, 3Esmaeil Mirzaeian, 4Samad Ghaderi Mojaveri

1Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran.

2Faculty Member of IT and Communication Department, Payam Noor University,Tehran, Iran.
3Department of IT and Communication, Payam Noor University,Tehran, Iran.
4Department of IT and Communication, Payam Noor University,Tehran, Iran.

Abstract: High level Petri Nets have recently drawn the attention of researchers for use in formalizing UML in
order to perform dynamic analysis and simulation of complex software systems. This paper presents a method
for constructing Petri Net models from UML models based on Coloured Petri Nets (CPN). By mapping the
specification written in UML to CPN, This method results in a Petri net model with remarkable coverage of all
instances of objects from different classes in the same class hierarchy. Proposed method has considered net-
explosion problem which make this method applicable for large scale systems with vast number of simultaneous
objects. Such Net can be used to check behavioural properties of a system at the design stage. A case study is
also presented to show the benefit of our method and resulting Net is implemented in CPN-Tools.

Key words: Simulation, UML Statechart; Coloured Petri Nets; Object Token; Class Hierarchy; Object-
 Oriented;

INTRODUCTION

 Software analysis and testing is a crucial activity to guarantee the quality and the reliability of the software.
It is often said that the cost for correcting an error after software release is four times more than doing an error
found at testing phase, and even 50 times more than at design phase (Pressman 2001: Zhu, Hall and May 1997)
thus being able to simulate the system in the early phase of system development will speed up the test phase and
increases the reliability. Object-oriented (OO) approach is one of the approaches to developing software
efficiently, that is enabling us to reduce or eliminate some typical problems of procedural software, but may
introduce new problems that can result in classes of faults hardly addressable with traditional testing techniques
(Barbey and Strohmeier 1994: Martena, Orso and Pezze 2002). In particular, state-dependent faults tend to
occur more frequently in OO software than in procedural software. Almost all objects have an associated state,
and the behavior of a member function invoked on an object typically depends on the object's state. Such faults
can be very difficult to reveal because they cause failures only when the objects are exercised in particular states
(Li and Wong 2002).
 One of the most important issues in OO software analysis is system simulation, which ensures class
implementations work properly. There have been some analysis and test methods proposed in the literature.
Most of them are based on Extended Finite State Machine (EFSM) models, such as (Hierons Kim and Ural
2002: Gong and Li 2008: Motameni Movaghar 2007). However, these models are only a program verification
technique, and produce events by observing a carefully chosen path in the EFSM to confirm the correctness of
the traversed transitions in the path. A method for generating test cases that detects the given faults is proposed
in (Motameni Movaghar 2007). In our previous researches we have presented transformational patterns for
UML state and Activity diagrams and also methods for evaluating some qualitative parameters (Motameni et al.,
2008; Peterson et al., 1981).
 In this paper, we propose a new approach to OO software simulation by mapping the specification written
in UML to CPN. In order to overcome net-explosion problem we adopt the idea proposed in (Bokhari et al.,
2005). we picked UML statechart rather than state transition diagram (STD) and we introduce rules to
make special tokens named Object Token (OT) that covers all objects instead of simple symbolic tokens.
These changes enable us to introduce a new algorithm to mapping UML statechart to CPN which is capable of
covering all instances of objects from different classes in the same hierarchy. A case study is presented to
show the benefit of our approach and resulting Net is implemented in CPN-Tools.
 The rest of the paper is organized as follows. The next section is an introduction to CPN and UML
Statecharts. In section 2, we show the basic idea of translating statechart to CPN. Section 3 presents the steps of
our translation technique and its mapping algorithm. Section 4 presents a simplified case study of a banking
system account and its analysis by using the existing tool of CPN, called CPN-Tools, and is also presented. In
section 5, conclusion and future work is presented.

Cpn and u
 In this
in this sect

Colored p
 Petri-N
and the abi
 In Col
Petri net th
associated

 Fig. 1: An

 Figure
which are
tokens, exp
transitions
"fires" and
In CPN, w
 The at
"Call" has
can find th
example, th
which con
figure, the
that exactly
whose colo
the transiti
"Argument
 A tran
 Each o
 The ex
 The gu

UML State
 UML
possible ab

 Simple Sta
 A sim
state diagr
actions and

Pseudo Sta
 A stat

uml statecharts
s section, we ill
tion.

petri net (cpn):
Nets (Jensen 2
ility to analyze
lored Petri Ne
he tokens have
with transition

n example of C

e 1 illustrates it
represented wi
presses the stat
. More concre

d the tokens mo
e can attach so
ttributes of tok
exactly one to

he colors associ
he place "Call"

nnects transitio
expression "1
y one token ca
or is "Thread",
ion. In the fig
t" place is 1, th

nsition in a CPN
of the places in
xpressions atta
uard attached t

echart:
state diagram

bstract states of

ate:
mple state repre
ram may find
d waits for even

ate:
e diagram star

Aust. J

s:
lustrate genera

2006) is one of
e concurrent be
ts (CPN) (Bok

e values which
ns.

CPN.

ts simple exam
ith circles, rect
te of the system
etely, if each o
ove to the outp
ome attributes s
kens are defined
oken and the to
iated with a pla
" can only rece

ons with places
'i" associated

an flow on it.
 occurring in th

gure, "Guard" i
hen the guard c
N is viable if th
nput to the tran
ached to the inp
to the transition

(Bokhari and
f the instances

esents one of t
itself. It is a
nts. In UML su

rts with a pseu

J. Basic & Appl.

al concept of C

f formal techni
ehavior.
khari et al., 20
h are typed wit

mple (Watanabe
tangles and arr
m that is specif
of the input pl
put places. This
so called "colo
d with "colors"

oken has the va
ace. They deno
eive the tokens
s. The express
with the arc b
The attribute v
he expression.
is represented
condition is sat
he following co

nsition has at le
put arcs to the t
n holds.

Poehlman 200
of a class. Its b

the finite numb
state of the ob
uch a state is re

udo initial state

Sci., 5(10): 1343

CPN and a brief

iques that has

005) proposed
th "color" and

e et al., 1998).
rows respectiv
fied with a Petr
laces to a tran
s movement co

ors" to places.
" as the types o
alue "1" whose
ote which colo
s of the color "
sions restrict th
between places
value of the flo
We can descri
"[i = 1]" whi

tisfied.
onditions hold.
east one token.
transition hold

05) models the
basic elements

bers of abstrac
bject during w
epresented by a

e shown by a s

3-1351, 2011

f sketch of UM

the ability to m

by Jansen, wh
the computatio

It contains "pl
ely. Marking,
ri net. The mov

nsition has at l
orresponds to a

of the attribute
e "color" is "Th
rs of tokens ca
Thread". Expr
he tokens that
"Call" and tra

owing token is
ibe a "Guard" o
ich means that

.

for the tokens

e behavior of a
s are:

ct states in wh
which it satisfi
a rounded recta

small solid circ

ML Statechart is

model concurr

hich is an exte
on expressions

laces", "transiti
which is a map
vement of toke
least one toke
a state transitio

values. In the
hread" (int.inte
an be accepted
ressions can be
t can flow on
ansition "Opera
s assigned to th
on a transition
t if the value

 in the input pl

a single object

hich the object
ies some cond
angle.

cle. The solid

s also mentione

rency of system

ended version
s on "colors" a

ions" and "arcs
p from places
ens denotes sta
en, the transitio
on of the system

figure, the pla
eger), the reade
at the place. F

e attached to ar
the arcs. In th
ation" represen
he variable "th
to control firin

of a token fro

laces.

t. It specifies th

modeled by th
ditions, perform

circle is, in fac

ed

ms

of
are

s",
to

ate
on
m.

ce
ers
or

rcs
his
nts
h",
ng

om

he

he
ms

ct,

marking th
state diagra

Composite
 A Com
sequential
sequential
state is acti

Transition
 A tran
another are
with it. An
presented i
action is a
machine as
and target
of state. Th
less transit

Fig. 2: A s

Relationsh
 In (Bo
idea in our
and transiti

Fig. 3: A s

 We us
suitable to
tokens mor

he initial state a
am must have t

e State:
mposite State
composite sta
composite sta
ive then one of

n:
nsition represen
e represented b

n event is the c
in square brac

a function that
s a result of th
state. Such tran
hese transition
tions. Figure 2

simple statecha

hip Between Cp
okhari and Poe
r mapping appr
ion as it is show

simple mapping

se this simple m
 cover all inst
re changes mu

Aust. J

and that is why
the initial pseu

is composed
ate or a concu
ate is active the
f the nested sta

nts an allowed
by a directed e

cause of a trans
ckets, that prev

represents the
e transition. In
nsitions repres

ns are called se
shows a typica

art.

pn And Statec
ehlman 2005)
roach to conve
wn in figure 3.

g of Statechart

mapping in di
ances of objec
st be applied. T

J. Basic & Appl.

y it is a pseudo
udo state, altho

of more than
urrent composit
en exactly one
ates from each

change from a
edge. A transi
sition and is so
vents a transiti
e effect of a tr
nstead of going
sent situations w
elf-transitions.
al statechart of

hart:
a mapping fro

ert each state an
.a.

t to CPN.

fferent way, ju
cts in OO syste
The following

Sci., 5(10): 1343

o state. A bullse
ugh the final p

n one sequent
te state depen

e of its sub-sta
concurrent stat

a source state t
tion may have

ometimes called
ion being taken
ransition and i
g to a different
where a messa
Transitions wi

f an ATM syste

om STD to low
nd its correspo

ust as it shown
em with more
sections discus

3-1351, 2011

eye circle repre
pseudo state is

ial or concurr
ding upon the

ates is also acti
te is also active

to a target state
e an event, a g
d a trigger. A g
n unless the c
is invoked on
state, a transit

age is received
ithout an assoc
em.

w-level Petri n
nding transitio

n in figure 3.b.
complex data

ss our mapping

esents the final
optional.

rent sub-state
e kind of sub-s
ive. If a concu
e.

e. Transitions f
guard and an a
guard is a Boo
ondition evalu
the object tha

tion may have
but does not re
ciated event ar

net is presented
ons to an equiv

. in order to m
structure inste

g in more detai

l pseudo state.

and is called
state it has. If
urrent composi

from one state
action associate
olean expressio
uates to true. A
at owns the sta

the same sour
esult in a chang
re called trigge

d. We adapt th
valent CPN pla

make this metho
ead of low lev
iled steps.

A

a
f a
ite

to
ed

on,
An
ate
rce
ge
er-

his
ce

od
vel

Aust. J. Basic & Appl. Sci., 5(10): 1343-1351, 2011

1346

Converting Uml Statechart To Cpn:
 In this section we introduce some definitions which are essential in Object Token concept and its structure.
Detailed steps and mapping algorithm are also presented.

Definitions:
 In OO systems object state is the only difference between instances of one class and it depends on value of
its properties; therefore object data structure plays important role in OO software system simulation. Other class
member such as methods can be implemented once and can be used for all instance of under simulating objects.
To present the data structure used in our mapping method, we categorized the data member of class in two
categories.
 Definition 1. Sensitive data member is the one that changes in its value and may cause the object to change
its state. For example in banking account system changes that make the data member balance to negative cause
the account to go to overdrawn state as it is shown in figure 5.
 Definition 2. Sensitive method is the one that can change the sensitive data member directly or indirectly.
For example in banking account system, a method such as deposit is considered sensitive method as long as it
can change the sensitive data member balance.
 Definition 3. Suppose that S is a typical state in statechart then pre[S] refers to all transitions that enters to
state S and next[S] refers to all transitions that leave state S.

Object Token:
 In order to cover all objects in the final CPN a special type of token must be constructed that make it
possible to distinguish different type of bject. To handle complicated behaviour of OO systems such as
polymorphism and dynamic binding, we introduce a set of sensetive data member of all classes in record format
of CPN color-set. We also add essential item in it named Type whose system-type is enum color-set, so we can
use it to identify different type of objects during system simulation. It is also useful to apply type constraint in
our method. Other optional items can be added to this record when we need to save more information of each
object. We refer to this token as Object Token (OT) and variables of this type as ot. Object Token and its
defined variables are the only tokens that flow in the generate net. When ot passes a transition or an arc, the
simulated event changes its content values by calling defined function in CPN.
 The overall view of mapping process is shown in figure 4.

Fig. 4: Our mapping process.

Mapping to CPN:
 In this section we present our mapping method in order to obtain single and optimized CPN with least
number of CPN items based on specifications written for related classes in same hierarchy. This method uses
statecharts of these classes. The mapping includes the following steps:

Step 1:
 This step consist of collecting all states in statechart of class I as. Then we construct comSet as the set of all
common sates in all generated and sumSet as set sum of all generated and we also must construct another set
for exclusive states in each statechart of typical class I as.

Step 2:
 Iin this step we use the generated sets from step1 to construct CPN, other type of sets are required in this
step such as and that are defined as Definition 3.

Step 3:
 Comp
its correspo

Step 4:
 This s
exclusive s
those state
More detai

Step 1: Ge
Foreach ex
 =Set o
 SumSet=
 ComSet=
 Foreach
 =

Step 2: Cr
 Foreach s
 Create pla
 Foreach
 Create
 Set A
 If m c
 Cr
 Co
 Set Ar
 Foreach d
 Create
 Set A
 If m g
 Cr
 Co
 Se

Step 3: Ma
 Foreach c
 Repea
 Conne
 Conne

Step 4: Ad
 Foreach e
 Forea
 A

 Final n
individual
one may us
 It is im
can not cha
other syste

Case Study
 In this
Class hiera
'Saving' Ac

osite states mu
onding entrypo

step uses exclu
state must by g
s.
ils are presenet

enerating Sets:
xisting statecha
of all states in C

=
do

reating initial C
state do
ace P of type O
do

e transition T a
rc inscription A

comes from ini
reate Place iP o
onnect iP toT w
rc inscription A
do
e transition T a
rc inscription A

goes to final sta
reate Place oP
onnect T to oP
et Arc inscripti

anaging Comp
composite state
at step 1-2 for C
ect input of CS
ect output of C

dding Type Con
existing none e
ach Arc A mapp
dd type constra

net may have
outgoing arc,
se specified ini
mportant to m
ange object sta

em alalysis leve

y:
s section, we u
archy of bankin
ccount as show

Aust. J

ust be mapped
oint and exitpo

usive sets and
guarded by a co

td in the follow

:
art C do
C

CPN:

OT

and Connect T
A to m(ot)
itialState then
of type OT
with Arc A
A to ot

and Connect P
A to m(ot)
ate then
of type OT

P with Arc A
ion A to ot

posite States:
e do
CS to generate
S to entryPoint
CS to exitPoint

nstrains:
empty as S do
ped from pre[S
ain to A

transitions tha
we can attach
itial marking a
ention that we
ate. All these m
el such as integ

se our approac
ng System. Thi

wn in figure 5.

J. Basic & Appl.

in this step by
oint to input and

Object Token
onstraint so tha

wing algorithm

to P with Arc

to T with Arc

e subCPN
Place subCPN
Place subCPN

S] do

at fork multipl
a place with r

at this place to s
e ignore none-
methods can be
gration testing

ch to generate C
is system cons

Sci., 5(10): 1343

y repeating step
d output transit

n to apply type
at only valid T

.

A

A

N
N

e places with
andom selectio
switch between
sensitive meth
e tested in arbi
these methods

CPN from ava
ists of a super-

3-1351, 2011

ps 1, 2 for eac
tion.

e constrain for
okens are qual

no guard. In s
on, although de
n outgoing arc

hods in our app
trary order or
 must be consi

ailable UML st
-class 'Account

ch composite st

Generated CP
lified to enter a

such transition
epending on an
s in predefined
proach becaus
individually, a
idered as well.

tatechart of sim
t' and two subc

tate and connc

PN, that is, eac
and pass throug

ns, to select eac
nalysis scenari
d order.
e these metho

although in som

mplified Accou
class 'Credit' an

cet

ch
gh

ch
io,

ds
me

unt
nd

Aust. J. Basic & Appl. Sci., 5(10): 1343-1351, 2011

1348

Fig. 5: Account Class of Banking system.

 Statecharts of these classes is also presented in figure 6.
 We mentioned earlier that Object Token can be constructed from sensitive data member of all available
classes in the same hierarchy. This information can be extracted from class diagram, such as figure 5.
 According to definition 1 and Object Token concept, we construct Object Token in CPN-ML standard as
follow:

 Colset Type = with Credit | Saving;
 Colset Account = record Accno:INT * B:INT *
 InvB:INT *AT:Type;

 The Account colset is a record with two sensitive data member B (Balance) and InvB (Investment Balance)
plus Type field. Another optional field (Accno) is added to enable us to identify different objects from same
Type.

Fig. 6: Statecharts of two related classes.

 Resulting CPN by applying our proposed algorithm to statecharts is implemented in CPN-Tools and is
shown in figure 7.

Aust. J. Basic & Appl. Sci., 5(10): 1343-1351, 2011

1349

Fig. 7: Top Level CPN

 In order to show the final CPN we implemented it in multi-level form to make it easy to understand. It is
shown in figure 8-10.

Fig. 8: Sub-Level working

 To analyze the behavior and to generate system test data, at first we should generate State Space Graph
(SSG) from the CPN. The SSG expresses traces of the marking of a CPN, i.e. tokens on places.

conclusion and future works:
 High level Petri Nets have recently drawn the attention of researchers for use in formalizing UML in order
to perform dynamic analysis and simulation of complex software systems. In this paper a method for
constructing Petri Net models from UML models based on Coloured Petri Nets (CPN) is presented. By mapping
the specification written in UML to CPN, This method results in a Petri net model with remarkable coverage of
all instances of objects from different classes in the same class hierarchy. The proposed method has considered
net-explosion problem which make this method applicable for large scale systems with vast number of
simultaneous objects. Such Net can be used to check behavioural properties of a system at the design stage. Our
work in this paper considers only generalization relationship between classes. We are investigating to expand
our method to cover association and aggregation relationship based on the extended version of Petri Nets.

Aust. J. Basic & Appl. Sci., 5(10): 1343-1351, 2011

1350

Fig. 9: Sub-Level Investment.

 A node and an arc in the graph represent a marking and a firing of a transition respectively. SSG can be
automatically generated and analyzed by existing tools such as CPN-Tools and ASAP (Ascoveco State-Space
Analysis Platform-CPN group).

Fig. 10: Sub-Level Overdrawn

REFERENCES

Pressman, R.S., 2001. ”Software Engineering – A Practitioner’s Approach Fifth Edition”, McGraw-Hill.
Barbey, S. and A. Strohmeier, 1994. "The Problematic of Testing Object-Oriented Software", In

Proceedings of the Second Conference on Software Quality Management, Edinburgh (Scotland, UK), vo1.2,
July, pp: 411-426.

Orso, A. and S. Silva, 1998. "Open Issues and Research Directions in Object-Oriented Testing". In
Proceedings of the 4th International Conference on "Achieving Quality in Software: Software Quality in the
Communication Society" (AQUIS'98), Venice.

Martena, V., A. Orso and M. Pezze, 2002 "Interclass Testing of Object-Oriented Software", In Proceedings
of the 8th IEEE international Conference on Engineering of Complex Computer Systems (ICECCS'02).

Aust. J. Basic & Appl. Sci., 5(10): 1343-1351, 2011

1351

Li, J.1. and W.E. Wong, 2002. "Automatic Test Generation from Communicating Extended Finite State
Machine (CEFSM)-Based Models", In Proceedings of the Fifth IEEE International Symposium on Object-
Oriented Real¬Time Distributed Computing (ISORC.02).

Hierons, R.M., T.H. Kim and H. Ural, 2002. "Expanding an Extended Finite State Machine to Aid
Testability", In Proceedings of the 26th Annual International Computer Software and Applications Conference
(COMPSACp02), pp: 1-6.

Duale, A.Y. and M. Uyar, 2004. "A Method Enabling Feasible Conformance Test Sequence Generation for
EFSM Models", IEEE Transactions on Computers, 53(5): 614-627.

Gong, H.F. and J. Li, 2008. "Generating Test Cases of Object-Oriented Software Based on EDPN and Its
Mutant ", Proceedings - IEEE The 9th International Conference for Young Computer Scientists ,Hunan, ICYCS,
pp.1112-1119.

Motameni, H., A. Movaghar, 2007. "Mapping Activity Diagram to Petri Net: Application of Markov
Theory for Analyzing Non-Functional Parameters", International Journal of Engineering, Transaction B:
Applications, Volume 20, Number l, 65-76.

Motameni, H., A. Movaghar, 2007. "Software Performance Evaluation from the UML Activity diagram
Using GSPN and Markov Chain" INFOCOMP, Journal of Computer Science.

Motameni, H., A. Movaghar, B. Shirazi, M. Aminzadeh and H. Samadi, 2008. "Analysis Software with an
object-oriented Petri net model", World Applied Science Journal, Volume 3.

Motameni, H., A. Movaghar, M. Siasifar, H. Montazeri and A. Rezaei, 2008. "Analytic Evaluation on Petri
Net by Using Markov Chain Theory to Achieve Optimized Models", World Applied Science Journal, Volume 3.

Motameni, H., A. Movaghar, M. Ebrahimi, S. Peirovi and A. Khosrozadeh Ghomi, 2008. "Designing a
Software Tool for Evaluating Qualitative Parameters ", World Applied Science Journal, Volume 3.

Motameni, H., A. Movaghar, I. Daneshfar, H. Nematzadeh and J. Bakhshi, 2008. "Mapping to Convert
Activity Diagram in Fuzzy UML to Fuzzy Petri Net", World Applied Science Journal, Volume 3.

Motameni, H., A. Movaghar, B. Kardel, 2005. "Verifying and Evaluating UML Activity Diagrams by
Converting to CPN ", Proc. of The International Symposium on Symbolic and Numeric Algorithm for Scientific
Computing, Timisoara, Romania, September 25-29.

Motameni, H., A. Movaghar, M. Zandakbari, 2006 "Deriving Performance Parameters from the Activity
Diagram Using GSPN and Markov Chain", Proc. of International Conference on Computer Science and
Software Development, National University, San Diego, California, June 27-29.

Watanabe, H., H. Tokuoka, W. Wu, M. Saeki, 1998. "A Technique for Analyzing and Testing Object-
Oriented Software Using Colored Petri Nets," apsec, pp.182, Fifth Asia-Pacific Software Engineering
Conference (APSEC'98).

Peterson, J.L., 1981. "Petri Net Theory and the Modeling of Systems", Englewood Cliffs, New Jersey,
Prentice Hall Inc.

Jensen, K., 2006. "An introduction to the theoretical aspects of Colored Petri Nets", Springer Berlin.
Bokhari, A.A. and W.F.S. Poehlman, 2005. "Formalization of UML State-Charts: Approaches for Handling

Composite States", Department of Computing & Software, McMaster University, Technical Report CAS 2005-
07-SP, pp: 10.

Zhu, H., P. Hall and 1. May, 1997. "Software Unit Test Coverage and Adequacy", ACM Computing
Surveys, April, pp: 366-427.

