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Abstract: The Linear Programming polygon is an undirected and without loop graph denoted by 
),( EV  with vertices V and edges E and the framework of the LP polygon is ),,( pEV . Some 

combinatorial issues of LP polygon are unfolded by the properties of rigidity matrix of the polygon. 
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INTRODUCTION 

 
Relevance of convex polyhedra to linear programming is obvious. That is, the feasible solution space for a 

linear programming problem is a polyhedron P.  
 

 
Fig. 1: Polyhedron in 2-Space. 

 
A d -polyhedron is called simple if every vertex of P belongs to precisely d edges. Simple polyhedra 

correspond to non-degenerate linear programming problems. As a convex polyhedron is the intersection P  of 

finite number of closed half spaces in dR . P is a d -dimensional polyhedron if the points of P  affinely span 
dR , where 2-dimensional polyhedron is polygon generated by a linear programming problem in two variables. 

A face F of a d -polyhedron P is the intersection of P with a supporting hyperplane. F itself is a polyhedron of 
some lower dimension; like vertex are 0-dimensional polyhedron, edge are 1-dimensional polyhedron and 
polygons are 2-dimensional polyhedrons.  

The set of vertices and edges of P  can be regarded as an abstract graph denoted by )(PG . We will denote, 

as by Kalai (1987), )(Pfk
the number of k -faces of P. The vector ( )(,...),(),( 10 PfPfPf d

) is called the f -

vector of P. Euler’s famous formula 2 FEV gives a connection between the numbers FEV ,, , that is, 

vertices, edges and 2-faces of every 3–polytope.  
The objective function  of linear programming problem attains different values on different vertices of P  

and we can say that every face F of P is itself a polytope and  attains different values on distinct vertices of F. 

Among the vertices of F there is a vertex on which  is maximal and again this vertex is the only vertex in F 

which is a local maximum of  in the face F.  

Hence moving from face to face and from vertex to vertex in search of the optimal solution has far-
reaching applications on the understanding of the combinatorial structure of a simple polytope.  

 
2. Incidence and Framework: 

In the figure below, the polygon P in discussion is convex and is the intersection of a finite number of 
halfspaces in the plane; these halfspaces are the constraints of a linear programming problem 
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with the following polygon 
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Fig. 2:  Linear Programming Polygon. 
 

The set of vertices and the set of edges of P can be regarded as an abstract graph called the graph of P and 
is denoted by )(PG . 

 
3. Rigidity and Framework: 

As we have already established that the graph of a polygon under discussion is denoted by )(PG , and now 

we establish that the graph ),( EV consists of the vertex set }....,,2,1{ nV  and the edge set E which the 

collection of unordered pair of vertices containing an edge. A framework is a triple ),,( pEV in which ),( EV is 

the graph and p is listing of point of the space which corresponds to the vertices and is described 

as }...,,,{ 21 npppp  . Any deformation of the framework is one parameter family, that is 

)](...,),(),([ 21 tptptpp n such that the distance from )(tpi to )(tp j
is kept fixed if both the edges belong to 

the edge set E , that is to say 
 

[ ( ) ( )] [ ( ) ( )]i j i j i jp t p t p t p t c              (1) 

 
for all edges of the graph with pp )0( .  

 
Now the framework is said to be rigid whenever )(tp is congruent to p for all t near zero, where )(tp is 

deformation and p is framework. 

 
Fig. 3: Triangulated LP Polygon. 
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writing in a more compact form by putting 

jiij ppq  , we have 
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Lemma:   

Sum of all vertices index is greater than zero 
 

Theorem:   
Dim ker 3),,( pEVP . 

 
Proof:   

Here ),,( pEVP is the rigidity matrix of P , since P is convex and 32  ne where e is the number of 

edges in the graph and n is the number of vertices in the graph. Since the rigidity matrix ),,( pEVP has 

n2 columns and 1e rows so the dimension 3)),,(dim( pEVP if and only if 0)),,(dim( TpEVP . 

 
Theorem:   

A framework of n vertices in d space has 
2

)1( 


dd
nd and implies rigidity. 

 
Proof:   

If ),,( pEVP has an infinitesimal flex, then that flex is a solution to the derived equation of (1) above. 

Since the every framework has 1d points in general position, the trivial deformations constitute a subspace 

of
2

)1( dd , and so the graph is infinitesimally rigid. 
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