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Abstract: Mysteries of Linear Programming are getting wilder and wilder; as the number of variables 
increases time complexity increases. One obstacle is our inability to "see" in higher dimensional 
geometry, another striking anonymity is the conjecture posed by W.M. Hirsch in 1957. Different 
pivot selecting rules has only been the source of improvisation. The projective properties of 

)(KSn are those properties of which the expression in every allowable coordinate system  is the 

same, that is to say, the invariance. Theory of harmonic construction and harmonic conjugates and 
related invariants provides a valuable ability to "see" into LP polytope. 
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INTRODUCTION 

 

A convex polyhedron is the intersection P of a finite number of closed halfspaces in dR . P is the d-
dimensional polyhedron if the points in P affinely span dR . A convex d-dimensional polytope is a bounded 
convex d-polyhedron (Kalai, 1997). A nontrivial face F of a d-polyhedron P is the intersection of P  with a 
supporting hyperplane. F itself is a polyhedron of some lower dimension. If the dimension of F is k we call F a 
k-face of P. The empty set and P itself are regarded as trivial faces. 0-faces of P  are called vertices, 1-faces are 
called edges and (d-1)-faces are called facets. Hence a strong relation between convex polytopes and a linear 
program is very much evident, for more material on convex polytopes.   

 
2. Landmarks: 

The classical tools for solving the linear programming problem in practice is the class of simplex 
algorithm proposed and developed by George Dantzig. The method is based on generating a sequence of bases. 
The fundamental characteristic of the method is that at some point a basis is reached which provides a solution 
to the problem. A suitable basis can certify either that the problem has no solution at all or that it is unbounded; 
otherwise, a basis will be reached which defines optimal solution for both the primal and the dual. 
Computational Complexity of linear programming had puzzled researchers even before the field of 
computational complexity started to develop. The question of finding bounds on the diameter and height of 
polytope is closely related to the complexity of simplex method. Stemming from the study of the diameter of 
polytope, Kalai developed a randomized simplex algorithm in 1992, and proved the first sub-exponential bound 
for linear programming and latter improved to )(),( 2log  dnOnd by Kalai and Kleitman. Other sub-

exponential randomized algorithms are Clarkson's algorithm which has )log( 2 ndO , Seidel's algorithm leads 

to the recurrence relation 
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Matousek/Sharir/Welzel algorithm results in sub-exponential bound 
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  (Khachiyan, 1979). 

 
Interior-Point Method promoted by N. Karmarkar  of Bell Laboratories in 1984 and Ellipsoid Method, the 

very first polynomial method for linear programming developed by L.G. Khachiyan is also an elegant 
mathematical construction but all are deficient in practicality. 
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3. Combinatorics of Linear Programming: 
The connection between convex polytope and linear programming is clear. Combinatorial theory of 

polytopes is the study of their face-structure and in particular their face numbers. The importance of the face 

number is that the maximum of the objective function  on P is attained at a vertex v  and vertices are 0-faces 

of the polytope. Denoted by )(Pfi the number of i-faces of P. The vector ))(.,...),(),(( 10 PfPfPf d is called 

the f-vector of P. Euler's formula 2 FEV is the beginning of a rich theory on face numbers of convex 
polytopes and related structures. Given a sequence ).,...,,( 110  dffff of nonnegative integers, where 

0d is a fixed integer, put 11 f and define ),...,,(][ 10 dhhhfh  by the relation 
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If )(Kff  the f-vector of a (d-1)-dimensional simplical K then )(][ Khfh  is called the h-vector of K. 

In 1970, McMullen proposed a complete characterization of f-vector of boundary complexes of simplical 
polytopes , recently McMullen found an elementary proof which is called g-theorem using polytope algebra.   

 
4. Projective Elements: 

Projective geometry includes all propositions of affine geometry that retain their meaning and validity 
after central projection.   

Complete four-point configuration consisting of the four points, six sides and three diagonal points.  
 

Theorem 4.1: 
 In any complete four-point following are true: 

I. No two of the sides coincide 
II. No four of the sides can be concurrent 

III. No three of the sides can pass through the same diagonal point 
IV. No two of the diagonal points can coincide 
V. No diagonal point can coincide with one of the four given points 

VI. None of the four given points can be collinear with two diagonal points 
 

Theorem 4.2:  
At least one harmonic point lies between any two of the four given points. 
 

Proof:  
In the algebraic representation, a harmonic tetrad is defined to be a set of four collinear points MLYX ,,, , 

such that 1),( LMXYR .  

In the algebraic representation,  
 

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

z

y

x

A

z

y

x

A

z

y

x

A

z

y

x

A 
 

 
be the vertices of an arbitrary four-point. Then, the diagonal points                                and  
 
where 3210 ,,,  are numbers, none of which is zero, such that 
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Adding these vectors, we have  
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Obviously, the point 32 DD  is a point on the line

32DD . Moreover, from its representation as a linear 

combination of 
0A and

1A , it is clear that it is also a point on the line
10 AA . In other words, it is the intersection 

of 32DD and 10 AA , that is, the harmonic point
1H . Similarly, we have  
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which is the coordinate-vector of the intersection of 32DD and 

32 AA , that is, the harmonic point '
1H . 

From (2) and (3),it is clear that if the line  
32DD is parameterized in terms of 

2D and 3D as base points, then the 

parameter of 1H are (1,1) and the parameter of '
1H are (1,-1). Hence 

 

1),( '
1132 HHDDR . 

 
Also, if ),( LMXY is an arbitrary harmonic tetrad, then  

 

),(~),( '
1132 HHDDLMXY  

 
and therefore  
 

1),(),( '
1122  HHDDRLMXYR . 

 
Lemma:  

Line at infinity contains at least two diagonal points and two harmonic points. 
 

5. Conclusion: 
Projective transformations are to be performed on the data (i.e. convex hull) generated by the C++ 

implementation of the Double Description Method for generating all vertices and extreme rays of a general 

convex polyhedron given by a system of  linear inequalities }|{ bAxxP  developed by Professor 

Komei Fukuda.  
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