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Abstract: Minkowski sum of two points A and B in the most natural manner is  
},|{ BbAabaBA     

where ba  is the vector sum of two points. Convolving two LP polygons and establishing some 
relation involving its solutions is also an incremental result towards the study of combinatorial 
structure of LP polytope and a combinatorial algorithm for solving LP problem. 
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INTRODUCTION 
 

Minkowski sums commonly arise in robotics under the name configuration space obstacle for robot motion 
planning, in non-collision tool path generation, mathematical morphology, and this sum also plays an important 
role in Linear Programming problems. 

A linear programming problem (LP) is to find a maximizer and minimizer of a linear function subject to 
linear inequality constraints, i.e.,  
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A convex polygon is the intersection A of a finite number of closed halfspaces in 2R , A is a 2-dimensional 

polyhedron if the points in A affinely span 2R 0. A convex 2-dimensional polytope is a bounded convex 2-
polyhedron. Hence, the relevance of convex polyhedra to linear programming is clear. The set A of possible 
solutions for a linear programming problem is a polyhedron.  

The Minkowski-Weyl theorem states that every polyhedron is finitely generated and every finitely 

generated set is a polyhedron, that is to say, two subsets A and B of dR , the Minkowski sum is denoted as  
 

},|{ BbAabaBA   

where ba  denotes the vector sums of the vectors a and that is to say, ),( yx aaa  and ),( yx bbb  then 

we have 
 

},{ yyxx bababa   

 
Minkowski-Weyl’s Theorem: 

a) A a polyhedron, i.e., for some real and finite matrix ][A and a real vector b , we have 

}][:{ bxAxA  . 

b) There are finite real vectors nvvv ,...,, 21 and srrr ,...,, 21 in dR such that 

),...,,(),...,,( 2121 sn rrrnonnegvvvconvA  . 
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Fig. 1: LP polygon A. 

 

Fig. 2: LP polygon B. 

Thus every polyhedron has two representations of type )(a and )(b , known as H- representation 

(halfspace) and V- representation (vertex) where V- representation is also known as the convex hull. The 
Minkowski addition problem is to compute the set v of all extreme points of the Minkowski addition. 

The boundary of the Minkowski sum of two geometric objects is part of the so-called convolution surface 
of the boundary surface of the two input objects.  
 
2. Minkowski Sum 

The Minkowski sum BA  consists of pair-wise sums of all points of A and B . Also note that from 

fundamental convolution, it follows that the winding number of a point with respect to BA is the number of 

connected components in the intersection of A and B translated by a point. 
 
Theorem 1: 

Minkowski sum BA of two polygons A and B with m and n edges respectively can have has at most 
nm   edges. 

Consequently the Minkowski sum of two convex polygons is a convex polygon and has linear complexity.  
 
Theorem 2: 

Resulting intersections polygons are also convex. 
 

Proof: 
Let x be a point then the Minkowski sum of x and the set B ,  

 

}|{ BbbxBx   
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this can be described as a translated copy of x , that is, each point of B is moved by x . Consequently we say 
that  
 

)( BxBA Ax    

 
is a union of copies of B , one for each Ax  . Each translation relocates the point to a newer location and 
forms other convex bodies. 
 

Conversely, given two vectors a of A and b of B , their vector sum  
 

1 2 1 2 1 1 2 2( , ) ( , ) ( , )a b a a b b a b a b c        

 
the resulting vector c lies away from A or B . Similarly other two points 'a and 'b  
 

' ' ' ' ' ' ' '
1 2 1 2 1 1 2 2' ' ( , ) ( , ) ( , ) 'a b a a b b a b a b c        

 
continuing this binary operation and translating solutions will generate other polygons as in Figure 3 above.  
 
Corollary 1: 

Individual solutions of the LP polygons A and B are preserved. 
 
Proof: 

Minkowski sums, in addition to generating other polygons, preserve the original LP polygons A and B .  
The preservation is caused by )0,0(x where x is the individual solution of each LP polygon. 
 
Conclusion: 

More striking mystery about the convex polytope, LP polytope, was posed by W. M. Hirsch in 1957. It says 
that the diameter of a convex polytope A is bounded by m-n. This makes LP much more mysterious and call for 
another polynomial time algorithm. Exploiting the combinatorial nature of LP polytope, summing two or more 
polytopes and analyzing their resulting structure point to some relations that are tempting in nature as in 
Theorem 1, Corollary 1. 
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