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Abstract: This article presents the deterministic system for susceptible-infective model for HIV. In
this paper the homotopy analysis method is employed to compute an exact analytical approximation
to the solution of the deterministic system for this model. We do a comparison between this method
and Runge-Kutta method.  
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INTRODUCTION

We considered the basic SI model for HIV as, 
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Analysis of method:
We will first present a brief description of the standard Homotopy Analysis Method (HAM) (Liao, 2004;

Liao, 1992; Liao, 2009). This will be followed by a description of the algorithm of the Modified Homotopy
Analysis Method (MHAM). To achieve our goal, we consider the differential equation 

  (2)[ ( )] ( )N v t g t

Where N are nonlinear operators, denotes the independent variable, v(t) are unknown functions and g(t) are
known analytic functions. For g=0, Eq. (2) reduces to the homogeneous equation. By means of generalizing
the traditional homotopy method, Liao (Liao, 2003) constructs the so-called zeroth-order deformation equation
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  (3)0(1 ) [ ( ; ) ( )] {[ ( ( ; )] ( )},p L t p v t p N t p g t     

where             is an embedding parameter, S are nonzero auxiliary functions, L is an auxiliary linear [0,1]p

operator, v0(t) are initial guesses of v(t) and Ψ(t;p) are unknown functions. It is important to note that, one has
great freedom to choose auxiliary object such as S and L in HAM. Obviously, when p=0 and p=1, both 

0 0( ) ( ;0) ( )        and        ( ) ( ;1),v t t v t v t t    

hold. Thus as p increases from 0 to 1, the solutions Ψ(t;p) varies from the initial guesses v0(t) to the solutions
v(t). Expanding Ψ(t;p) in Taylor series with respect to p, one has
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If the auxiliary linear operator, the initial guesses, the auxiliary parameters S, and the auxiliary functions
are so properly chosen, then the series (4) converges at p=1, and one has 
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which must be one of the solutions of the original nonlinear equations, as proved by Liao (Liao, 2005). As
S=-1, Eq. (3) becomes

  (6)0(1 ) [ ( ; ) ( )] {[ ( ( ; )] ( )} 0,p L t p v t p N t p g t      

which is used mostly in the homotopy perturbation method (HPM) (Liao, 2000). According to Eq. (4), the
governing equations can be deduced from the zeroth-order deformation equation (3). Define the vectors 

  (7)0 1 2{ ( ), ( ), ( ),..., ( )}.n nv v t v t v t v t




Differentiating Eq. (3) m times with respect to the embedding parameter p and then setting p=0 and finally
dividing by m!, we have the so-called mth-order equation
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It  should  be  emphasized  that                 is  governed  by the linear equation (8) with the linear( )( 1)mv t m 

boundary conditions that come from the original problem.

Zeroth-order Deformation Equations:
To solve Eq. (1) by means of homotopy analysis method (Liao 2009) we chose the nonlinear operator,
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Let              denote the initial guesses of S(t) and I(t), £S and £I the  two auxiliary linear operators, 0 0( ), ( )S t I t

HS(t) and HI(t) the two non-zero auxiliary functions, and S a non-zero auxiliary parameter, called the
convergence control parameter. We will determine all of them later. We have great freedom to choose all of
them. Let p0[0,1] denote the embedding parameter. Then we construct the family of the differential equations,
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with the initial conditions,
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Obviously, when p=0 and p=1, it holds,
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Thus as p increase 0 to 1, the solutions S(t;p) and I(t;p) varies from the initial guesses S0(t) and I0(t) to
the solutions S(t) and I(t), respectively. Expanding  S(t;p) and I(t;p) in the Taylor series with respect to p, one
has, 
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If the auxiliary linear operators, the initial guesses, and the auxiliary parameter S are so properly chosen,
the series (14) and (15) are converge at p=1, one has,
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High-order Deformation Equation:
We define the vectors, 

 (20)0 1{ ( ), ( ),..., ( )},m mS S t S t S t
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Differentiating Eq. (11) and Eq. (12) m times with respect to the embedding parameter p and then setting
p=0 and finally dividing them by m!, we have the so-called m th-order deformation equations,
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It should be emphasized that Sm(t) and Im for m$1 are governed by the linear equations (22) and (23) with

the linear boundary conditions that come from original problem, which can be easily solved by symbolic
computation software such as Matlab, Maple and Mathematica.

Explicit Series Solution of the Deterministic Si Model:
Since S(t) ÷S4 and I(t) ÷I4 as t ÷4, So S(t) and I(t) can be expressed by, 
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where ak and bk are coefficients to be determined. From Eqs. (1), we have, 
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where,             To  obey  the solution expressions (27) and (28), we choose the initial guesses S0(t) and (0) .r
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where, 
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To obtain solutions in the form of Eq. (27) and Eq. (28), we choose the auxiliary linear operators, 
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with the property, 
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where c1 and c2 are the integral constants. Substituting the initial guesses I0(t) and S0(t) into Eq. (25) and Eq.
(26), we get, 
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are coefficient. We know that

 (37)( ) ( ) ,tu t u t Ae B    



Aust. J. Basic & Appl. Sci., 5(10): 206-213, 2011

211

 

M1 1I M,

M2 

IM,

M3 N,

M4 

SN,

N1 MI,

N2 MI,

N3 

SN,

N4 SN,

has the general solution, 
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where C1 is an integral constant. Obviously, the term te-at does not satisfy the expressions (27) and (28).
Fortunately, we have freedom to choose the auxiliary functions HS(t) and HI(t), and thus we can avoid the
appearance of the term te-at simply by means of choosing,
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Then the first-order deformation equations become, 
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where a1,k and b1,k are constants. After solving Eq. (40) and Eq. (41) we have,  
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Similarly, for second order we have, 

 (44)

6
1, ( 2)

2 1 2
0

6
1, ( 2) 0

3 4
0

( ) [( ( 1) ) ],  
1

[ ] ,
1

kS k t

k

k k t

k

a
t M k e M

k

b
M e M S

k









 



 



    


  








 (45)

6
1, ( 2)

2 1 2
0

6
1, ( 2)

3 4
0

( ) [ ],
1

[ ( 1) ],
1

kI k t

k

k k t

k

a
t N e N

k

b
N h k e N

k





 



 



  


   





where 

with                    and                  Then the second-order deformation equations become, 0 ( )M S t S  0 ( ) .N I t I 
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After solving Eq. (Sec0.Eq39) and Eq. (Sec0.Eq40) we have, 
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In a similar way, it is easy to get S3(t), I3(t), S4(t), I4(t) and so on, especially by means of symbolic
computation software such as Matlab, Mathematica and Maple. For  th-order we have,
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Results:
Example.  In  this  example  we used the following parameters,                                   µ=0.1,0(0) 120, (0) 40, 2,S I S  

rβ=0.5, α = 8, For this example we have, R0=5>1. According to the curve SÍS at the  th-order of
approximation, the homotopy analysis method series are convergent in the region -1#S#-0.25 (See Fig.1). So,
we choose S=-0.75, and the corresponding homotopy analysis method series converge to the numerical ones,
as shown in Fig.2. 

  
Fig. 1: The S-curve of 20th-order approximation by HAM for t=10.

Fig. 2: Solid line: The susceptible and infective curves of 20th-order approximation by HAM when S=-0.75,
α=8, HS(t)=HI(t) = e-at, and dot line: the susceptible and infective curves of RKM5
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Example. In this example we used the following parameters, S(0)=120, I(0)=80, S0=10, μ=0.22, rβ=0.2,
α = 3, For this example we have, R0=0.91<1. According to the curve SÍS at the 20th-order of approximation,
the homotopy analysis method series are convergent in the region -1.5#S#0. So, we choose S=-1.25, and the
corresponding homotopy analysis method series converge to the numerical ones, as shown in Fig.3. 

Fig. 3: Solid line: The susceptible and infective curves of 20th-order approximation by HAM when  S=-1.25,
α=3, HS(t)=HI(t) = e-at, and dot line: the susceptible and infective curves of RKM5

Conclusions:
In this article we used the homotopy analysis method to find the exact analytical approximation for

deterministic systems for susceptibe-infective model in the epidemic diseases. We obtained analytical
approximation with high accuracy by taking suitable initial conditions. 
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