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Abstract: This article presents the deterministic system for susceptible-infective model for HIV. In
this paper the homotopy analysis method is employed to compute an exact analytical approximation
to the solution of the deterministic system for this model. We do a comparison between this method
and Runge-Kutta method.
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INTRODUCTION

We considered the basic SI model for HIV as,

S = u(S° = S@) - YS(HI(2), (1
AD = YS () I(t)— pl(2),

subject to initial conditions 7(0) = /,,S(0) = S,where xS° is the rate of population as new susceptible into class
S, Y= %; S+I=N, where N is total population s ize (Hethcote, 2000). The disease-free equilibrium,

and

reproductive number and endemic equilibrium for this model are at order FE, =(S0,()),R0 z%

E = (%’ R‘I‘e; £5%) . So we have two different cases for ¢ approaching e,

@ If Ry = % <1 for any I, then,
(+0) =0,8(+0) = S°,

@) If Ry = % > 1 for any I,, then,
I(+0) = S°(1=4), S (+o0) =25

Analysis of method:

We will first present a brief description of the standard Homotopy Analysis Method (HAM) (Liao, 2004;
Liao, 1992; Liao, 2009). This will be followed by a description of the algorithm of the Modified Homotopy
Analysis Method (MHAM). To achieve our goal, we consider the differential equation

Nv()]=g() ©))

Where N are nonlinear operators, denotes the independent variable, v(¢) are unknown functions and g(¢) are
known analytic functions. For g=0, Eq. (2) reduces to the homogeneous equation. By means of generalizing
the traditional homotopy method, Liao (Liao, 2003) constructs the so-called zeroth-order deformation equation
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(A=p)LIY(#; p) = v (D] = pP{[N (¥ (1; p)] - g (D)}, 3)
where p €[0,1] is an embedding parameter, % are nonzero auxiliary functions, L is an auxiliary linear

operator, v,(f) are initial guesses of v(f) and W(¢,p) are unknown functions. It is important to note that, one has
great freedom to choose auxiliary object such as % and L in HAM. Obviously, when p=0 and p=1, both

v =P -v()  and  w(0)=P@D),

hold. Thus as p increases from 0 to 1, the solutions P(¢;p) varies from the initial guesses v,(f) to the solutions
v(f). Expanding ¥(¢,p) in Taylor series with respect to p, one has

(t; p) = vy () + D v, () p", 4
m=1
where
_ 1 "Y@&p)
Vi = m op” p=0" (%)

If the auxiliary linear operator, the initial guesses, the auxiliary parameters 5, and the auxiliary functions
are so properly chosen, then the series (4) converges at p=1, and one has

Y1) =v, (1) + ivm ®),

m=1
which must be one of the solutions of the original nonlinear equations, as proved by Liao (Liao, 2005). As
#-1, Eq. (3) becomes

(I=p)L[Y (& p) —v, (D] + pUIN(Y (5 p)]-g()} =0, (6)

which is used mostly in the homotopy perturbation method (HPM) (Liao, 2000). According to Eq. (4), the
governing equations can be deduced from the zeroth-order deformation equation (3). Define the vectors

v, = (D (0,9, () v, (0)}. (7)

Differentiating Eq. (3) m times with respect to the embedding parameter p and then setting p=0 and finally
dividing by m!/, we have the so-called mth-order equation

Ly, ()= 2,V ()] =R, (V1) ®)
where
> 1 "NY @ e)l-g(0)
and
3 0, m<l,
Am = I, m>1.

It should be emphasized that v, (#)(m>1) is governed by the linear equation (8) with the linear
boundary conditions that come from the original problem.

Zeroth-order Deformation Equations:
To solve Eq. (1) by means of homotopy analysis method (Liao 2009) we chose the nonlinear operator,
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oS(t;
N [S( ), 16 p)] = % — uS" + uS(t: p)+ YS(t; p)I(t: ),
(10)

N, [S( p),1(t; p)]= = YS(t; p)I(¢; p) + pl(2; p),

Let S,(?),1,(?) denote the initial guesses of S(#) and I(¢), £; and £, the two auxiliary linear operators,

ol(t; p)
ot

Hy(#) and H/(f) the two non-zero auxiliary functions, and % a non-zero auxiliary parameter, called the
convergence control parameter. We will determine all of them later. We have great freedom to choose all of
them. Let pe[0,1] denote the embedding parameter. Then we construct the family of the differential equations,

(1= p)£[S(t; p) =S, ()] = phH (R[St p), 1(2; p)], (11)
(1= p)E[1(5; p)— 1, (0] = phH ()R [S(t; p), I(t; p)], (12)
with the initial conditions,

SO;p)=S,, 1(0;p)=1,. (13)

Obviously, when p=0 and p=1, it holds,
S(0; p) = 8,(1),1(0; p) = I, (t)and S(1; p) = S(2),1(1; p) = I(1).
Thus as p increase 0 to 1, the solutions S(¢,p) and I(z,p) varies from the initial guesses Sy(f) and ,(¢) to

the solutions S(¢) and (), respectively. Expanding S(z,p) and I(¢;p) in the Taylor series with respect to p, one
has,

S(t;p) =S, ()+ )8, (Op", (14)
m=1
I(t;p)=1,()+ Y 1,0 p", (15)
m=1
where
_19"S&p) 16)
m! op" p:o,
_19p) a7
" m! op" o

If the auxiliary linear operators, the initial guesses, and the auxiliary parameter 5 are so properly chosen,
the series (14) and (15) are converge at p=1, one has,

_ 1 0"I(tp) as)
" m! op” o
1) =1,()+ 1,0, (19)

m=1
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High-order Deformation Equation:
We define the vectors,

S = Sy(1,8,(0)s.o0 S, (O} o)
I ={1,(),1,(2),....1 (2)}. (21)

Differentiating Eq. (11) and Eq. (12) m times with respect to the embedding parameter p and then setting
p=0 and finally dividing them by m/, we have the so-called m th-order deformation equations,

£, (1)~ 2nSo 2 (O] = RH (O (1), )
E1L, (0= oL, 1 (0)] = RH (R (1), @3)
with the initial conditions,
S (0)=0, I (0)=0, (24)
where
w20 =L s s, 0+ 15105, e5)
i}{fn )= % +ul, (H)— Yglk ®)S,,_,_. (1), (26)
and -

0, m<l,
n = {1, m>1,

It should be emphasized that S,,(¢) and /, for m>1 are governed by the linear equations (22) and (23) with
the linear boundary conditions that come from original problem, which can be easily solved by symbolic
computation software such as Matlab, Maple and Mathematica.

Explicit Series Solution of the Deterministic Si Model:
Since S(f) —S., and I(t) 1, as t —, So S(f) and I(f) can be expressed by,

S(t)=S, + iake_km, 27)
=

I()=1,+Y be™™, (28)

where a, and Z:lare coefficients to be determined. From Egs. (1), we have,

8'(0) = 18" = u1S(0) = YS(0)1(0), (29)

I'(0) = YS(0)1(0)— 1I(0), (30)

where, Y =% To obey the solution expressions (27) and (28), we choose the initial guesses Sy() and

1,(¢) such that,
S (=8, +C,e " + &y, " + 8,07, (31)

I,()=1, +7/0,1eim +7/0,2€72m +7/o,3€73m9 (32)
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where,

40,1 = 4/0,1’
1
4,0,2 =35,-3S, +;(,USO — U8, _YSOIO)_Zgo,l’
1
4’0’3 =25, -28, +;(,USO - uS, —YSOIO)+§0,1,
Yoi1 =701

1
Vo2 = 31,-31, +;(,ulo _YSOIO)_270,1»

1
Yos = 21, =21, +;(,u[0 -YS,/,) +701

To obtain solutions in the form of Eq. (27) and Eq. (28), we choose the auxiliary linear operators,

£,[8(; py) = BEP) ( . )+ aS(t; p). (33)

£t p)]=

with the property,

al(t; p)
=0l ol 34
; (t; p)s G4

£[ce™]1=0, £[c,e™]=0, (35)

where ¢, and ¢, are the integral constants. Substituting the initial guesses /,(f) and Sy(¢) into Eq. (25) and Eq.
(26), we get,
6

6
R (1) = Zal,ke_k"”, Ri(1)= Zbl,ke_k"”, (36)
k=0 k=0
where,
0 =uS, ~uS’+S 1Y,
a, = pgy, —agy, +7y,S, Y +& LY,
2 = /Jé/o,z - 2Olé/(),z + 410,17/0,1Y + 70,2SooY + go,zle’
a3 = pG, =308, 3+ 8,70, Y+ G070, L+ 7035, Y+ 8051, Y,
4= C03Y01 Y + 802702 Y ++001705 7,
a5 =Co3702 Y+ 80,7057,
6= 5037035
bo=pl, —S. 1Y,
b, = HYo1 =AYy, _70,1S00Y_§0,11wY’
by =mys, =20y, =Co1Yoa X = Vo285, X =G0, 1Y,
by =15 =375 =02 oa ¥ =Coa702 ¥ = 7038, Y =01, T,
by ==Co3701 Y = 02702 Y —Co.Y05 T,
b s ==Co3702Y =C02705 Y

6= _4/0,370,31"
are coefficient. We know that

u'(t)+oau(t)=Ae™ +B, (37)
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has the general solution,
—at —at B
u(t)=Ate” +Ce " +—, (38)

(24

where C, is an integral constant. Obviously, the term ze” does not satisfy the expressions (27) and (28).
Fortunately, we have freedom to choose the auxiliary functions Hy(f) and H/(f), and thus we can avoid the
appearance of the term ze® simply by means of choosing,

H,t)=e?", H,(t)=e">"" . (39)
Then the first-order deformation equations become,
6
S () +as, (1) = hzal,ke_(k+2)ata $,(0)=0, (40)
k=0
6
L +al,(t)=hY b e, 1,(0)=0, @1)
k=0
where a,; and b,; are constants. After solving Eq. (40) and Eq. (41) we have,
& Gy Qg | -
S )=—— s a(k+2)t +- at 42
(1) = ;—k 1 (Z k+1) (42)
I (t) — _Eibl_,k —af(k+2)t (z 1k ) —at (43)
aitk+1 s k+1

Similarly, for second order we have

RS (1) = Z ‘+" (M, —(k+1)— )e’("+2)"’+M]

(44)

6
+;_1f1 [M,e "% 4+ M, uS°,
ER ( ) Zk+1 1 —(k+2)at +N2],

(45)

lk —(k+2)at
+§ [N, +h(k+1)e *2* + N, ],
k,0k+1[ 3 +h(k+1) 4]

where

M, @20 =i o s40@U0
My B =00 #2510 5 QUO
M, a8 ey

M, @520 Go OV

N BV =i [0

N, dE20M 3.0

Ny - Snerse =N

N, 209350 SINO

with M =S§,(¢)—S, and N =1 (t)—1I,. Then the second-order deformation equations become,
Sy(0+aS, () =hH (R, (1), S,(0)=0,
L) +al,(t)y=hH ()R (t), 1,(0)=0,
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After solving Eq. (Sec0.Eq39) and Eq. (Sec0.Eq40) we have,
S,(t) =he™ | ;HS ()RS (1)e“ dt, (46)
L(n=he| ;H, (R (t)e” dt, 47)

In a similar way, it is easy to get S;(¢), L5(¢), S.(¢), L,(f) and so on, especially by means of symbolic
computation software such as Matlab, Mathematica and Maple. For th-order we have,

S,(0)=he™ | ;HS (RS (1)e“ dt, 8)
1,(0)=he™ | ;H, (R (t)e™ dt, (49)
Results:

Example. In this example we used the following parameters, S(0)=120,7(0)=40,5’=2, u=0.1,

rp=0.5, a = 8, For this example we have, R=5>1. According to the curve S~7# at the th-order of
approximation, the homotopy analysis method series are convergent in the region -1<h<-0.25 (See Fig.1). So,
we choose h=-0.75, and the corresponding homotopy analysis method series converge to the numerical ones,
as shown in Fig.2.
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Fig. 1: The h-curve of 20th-order approximation by HAM for t=10.
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Fig. 2: Solid line: The susceptible and infective curves of 20th-order approximation by HAM when #=-0.75,
0=8, H(t)=H/(t) = ¢, and dot line: the susceptible and infective curves of RKMS5
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Example. In this example we used the following parameters, S(0)=120, 1(0)=80, $°=10, x=0.22, r$=0.2,
o =3, For this example we have, R;=0.91<1. According to the curve S~% at the 20th-order of approximation,
the homotopy analysis method series are convergent in the region -1.5<%<0. So, we choose h=-1.25, and the
corresponding homotopy analysis method series converge to the numerical ones, as shown in Fig.3.
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Fig. 3: Solid line: The susceptible and infective curves of 20th-order approximation by HAM when #=-1.25,
0=3, H(t)=H/(t) = ¢, and dot line: the susceptible and infective curves of RKMS5

Conclusions:

In this article we used the homotopy analysis method to find the exact analytical approximation for
deterministic systems for susceptibe-infective model in the epidemic diseases. We obtained analytical
approximation with high accuracy by taking suitable initial conditions.
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