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Abstract: In this work, the modified variational iteration method (MVIM) is applied to solve linear 
and nonlinear ordinary differential equations such as Lane-Emden, Emden-Fowler and  Riccati 
equations. The MVIM provides a sequence of functions which is convergent to the exact solution and 
is capable to cancel some of the repeated calculations and reduce the cost of operation in comparison 
with VIM. The method is very simple and easy. 
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INTRODUCTION 
 

The variational iteration method was first proposed by Ji-Huan He to find the solution of a differential 
equation using an iterative scheme (He J.H., 1998; 2000; 2006; 2007; 2008). Many researches in variety of 
scientific fields applied this method and showed the VIM has many merits and to be reliable for a variety of 
scientific application, linear and nonlinear as well (Abdou M.A. 2005; Abulwafa, 2006; S. Momani, 2005; 2006; 
Wazwaz, 2007; 2008). 

Insight into the solution procedure of the VIM shows some disadvantages, namely, repeated computation of 
redundant terms, which wastes time and effort. Abassy et al., proposed the modified variational iteration method 
and used it to give an approximate power series solutions for some well-known nonlinear problems (Abassy, 
2007). 

The modified variational iteration method (MVIM) facilitates the computational work and minimizes it. 
This method can effectively improve the speed of convergence (Abassy, 2007). 

In this work, we aim to show the power of MVIM in handling various types of ODEs of distinct orders. In 
fact this paper is an extension of the work done in (Wazwaz, 2009) which shows a new application of MVIM for 
linear and nonlinear homogeneous and inhomogeneous ODEs. 

 
2. First Order ODEs: 

First, we consider the first order linear ODE of a standard form 
 

ݑ ൅́ ݑሻݔሺ݌ ൌ ሺ0ሻݑ    ,ሻݔሺݍ ൌ  (1)                                                                                                                            .ߙ
 
According to the VIM, the basic character of the method is to construct a correction functional for the 

equation, which reads (Wazwaz, 2009): 
 

ሻݔ௡ାଵሺݑ ൌ ሻݔ௡ሺݑ ൅ ׬ ௡ݑሻሺݐሺߣ
′ ሺݐሻ ൅

௫
଴

ሻݐ෤௡ሺݑሻݐሺ݌ െ  (2)                                                                                ,ݐሻሻ݀ݐሺݍ
 
where ߣ is called a general Lagrange multiplier (M. Inokuti, 1978), which can be identified optimally via 

variational theory, ݑ෤௡ denotes a restricted variation, i.e. ݑߜ෤௡ ൌ 0.  
Calculating variation with respect to ݑ௡, the following stationary conditions are obtained (Wazwaz, 2009). 
 

1 ൅ λห௧ୀ௫ ൌ ห௧ୀ௫′ߣ     , 0 ൌ 0.                                                                                                                                 (3) 
 
The Lagrange multiplier, therefore, can be identified as ߣ ൌ െ1. 
By Substituting the identified multiplier into Eq. (2) the following iteration formula can be obtained as: 
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ሻݔ௡ାଵሺݑ ൌ ሻݔ௡ሺݑ െ ׬ ሺݑ௡
′ ሺݐሻ ൅

௫
଴

ሻݐ௡ሺݑሻݐሺ݌ െ   (4)                                                                                        .ݐሻሻ݀ݐሺݍ
 
Recall that: ݑሺݔሻ ൌ ݈݅݉௡՜∞  .ሻݔ௡ሺݑ
      
In this method, there are repeated calculation in each step, to cancel some of the repeated calculation, the 

iteration formula (4) can be handled as follows 
 

ሻݔ௡ାଵሺݑ  ൌ ሻݔ௡ሺݑ െ ׬ ௡ݑ
′ ሺݐሻ௫

଴
ݐ݀ െ ׬ ൫݌ሺݐሻݑ௡ሺݐሻ െ ሻ൯ݐሺݍ

௫
଴

   .ݐ݀
Therefore 
 
ሻݔ௡ାଵሺݑ ൌ ௡ሺ0ሻݑ െ ׬ ሺ݌ሺݐሻݑ௡ሺݐሻ െ ሻሻݐሺݍ

௫
଴

 (5)                                                                                                    .ݐ݀
 

We can set ݑ௡ሺ0ሻ ൌ ଴ݑ ൌ  so ,ߙ
 

ሻݔ௡ାଵሺݑ ൌ ଴ݑ െ ׬ ሺ݌ሺݐሻݑ௡ሺݐሻ െ ሻሻݐሺݍ
௫

଴
 (6)                                                                                                          .ݐ݀

 
Via the iteration formula (6) some repeated computation are cancelled. 
To eliminate all repeated computation, let us rewrite Eq. (6) in the following iteration formula: 

 
ሻݔ௡ାଵሺݑ ൌ ଴ݑ െ ׬ ሻݐ௡ሺݑሻሺݐሺ݌ െ ሻሻݐ௡ିଵሺݑ

௫
଴

ݐ݀ െ ׬ ൫݌ሺݐሻݑ௡ିଵሺݐሻ െ ሻ൯ݐሺݍ
௫

଴
 (7)                                                   .ݐ݀

 
But it is known from (6) that  

 
ሻݔ௡ሺݑ ൌ ଴ݑ െ ׬ ሺ݌ሺݐሻݑ௡ିଵሺݐሻ െ ሻሻݐሺݍ

௫
଴

 (8)                                                                                                          .ݐ݀
 

Substituting by (8) in (7), we obtain 
 
ሻݔ௡ାଵሺݑ ൌ ௡ݑ െ ׬ ሻݐ௡ሺݑሻሺݐሺ݌ െ ݐሻሻ݀ݐ௡ିଵሺݑ

௫
଴

,   ݊ ൐ 0                                                                                       (9) 
 

 where ିݑଵ ൌ ଴ݑ   , 0 ൌ ሺ0ሻݑ ൌ    ଵ is obtained fromݑ and ߙ
 

ଵݑ ൌ ଴ݑ െ ׬ ሺ݌ሺݐሻ൫ݑ଴ሺݐሻ െ ሻ൯ݐଵሺିݑ െ ݐሻሻ݀ݐሺݍ
௫

଴
.                                                            

 
This final modified formula (9) cancels all the repeated calculation and terms, which are not needed. 

Now, we apply the MVIM for solving first order ODEs. Examples 2 and 3 are two well-known first order 
nonlinear equations, namely the logistic differential equation and the Riccati equation. 

Notice that for nonlinear problems, the MVIM is not require specific treatment and approaches in a like 
manner to that used for linear problems.  

 
Example1: 

Now we consider the following first order inhomogeneous ODE 
 

′ݑ െ ݑ ൌ ݁௫  ,         ݑሺ0ሻ ൌ 0                                                                                                                                (10) 
     
For solving this equation by MVIM, follow the discussion presented above we can set ݑ଴ ൌ ଵିݑ , 0 ൌ 0 

and we use the follow iteration formula 
 

௡ାଵݑ ൌ ௡ݑ െ ׬ ሺെሺݑ௡ െ ௡ିଵሻሻݑ
௫

଴
, ݐ݀ ݊ ൐ 0                                                                                                       (11) 

 
where     ݑଵ ൌ ଴ݑ െ ׬ ሺെሺݑ଴ െ ଵሻିݑ െ ݁௧ሻ௫

଴
   .ݐ݀

 
Therefore by the above iteration formula, we can obtain following approximations 
    

ଵݑ ൌ ଴ݑ െ ׬ ሺെሺݑ଴ െ ଵሻିݑ െ ݁௧ሻ௫
଴

ݐ݀ ൌ ݁௫ െ 1, 
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ଶݑ ൌ ଵݑ െ න ൫െሺݑଵ െ ଴ሻ൯ݑ
௫

଴
ݐ݀ ൌ 2݁௫ െ ݔ െ 2 ൌ 2 ቆ1 ൅ ݔ ൅

ଶݔ

2!
ቇ െ ݔ െ 2 ൌ ሺ1ݔ ൅  ,ሻݔ

 

ଷݑ ൌ ଶݑ െ න ൫െሺݑଶ െ ଵሻ൯ݑ
௫

଴
ݐ݀ ൌ 3݁௫ െ ݔ2 െ

1
2

ଶݔ െ 3 

 

ൌ 3 ቀ1 ൅ ݔ ൅ ௫మ

ଶ!
൅ ௫య

ଷ!
ቁ െ ݔ2 െ ଵ

ଶ
ଶݔ െ 3 ൌ ݔ ቀ1 ൅ ݔ ൅ ௫మ

ଶ!
ቁ,                                                                         

 

ସݑ ൌ ଷݑ െ න ൫െሺݑଷ െ ଶሻ൯ݑ
௫

଴
ݐ݀ ൌ 4݁௫ െ ݔ3 െ ଶݔ െ

1
6

ଷݔ െ 4 

 

ൌ 4 ቆ1 ൅ ݔ ൅
ଶݔ

2!
൅

ଷݔ

3!
൅

ସݔ

4!
ቇ െ ݔ3 െ ଶݔ െ

1
6

ଷݔ െ 4 ൌ ݔ ቆ1 ൅ ݔ ൅
ଶݔ

2!
൅

ଷݔ

3!
ቇ                 

                   ڭ           

ሻݔ௡ሺݑ ൌ ݔ ቀ1 ൅ ݔ ൅ ௫మ

ଶ!
൅ ௫య

ଷ!
൅ ڮ ൅ ௫೙

௡!
ቁ.                                                                                                    

       
Obtained by using the Taylor series for the obtained approximation. Recall that the exact solution can be 

obtained by using:  ݑሺݔሻ ൌ lim௡՜∞ ሻݔ௡ሺݑ ൌ  ௫, which are the same solutions as obtained by Wazwaz (2009)݁ݔ
with VIM, but in this method as it is shown, the source inhomogeneous term is only used for the first iteration 
step (ݑଵሻ and this method reduces the size of calculation in comparison with VIM. 

 
Example2: 

Now we solve the follow nonlinear logistic differential equation by the MVIM: 

′ݑ ൌ ሺ1ݑߤ െ ሺ0ሻݑ    ,  ሻݑ ൌ ଵ

ଶ 
                                                                                                                              (12)  

where ߤ ൐ 0 is a positive constant. 
 
Follow the discussion presented above, we use the iteration formula 
 

௡ାଵݑ ൌ ௡ݑ െ ׬ െߤሺݑ௡ െ ௡ିଵሻ൫1ݑ െ ሺݑ௡ െ ௡ିଵሻ൯ݑ
௫

଴ ,ݐ݀ ݊ ൒ 0.                                                                         (13) 
 

Starting with initial approximation ݑ଴ ൌ ଵ

ଶ
  and  ିݑଵ ൌ 0  and by the iteration formula (13), we can obtain 

the following approximation: 
 

ଵݑ ൌ ଴ݑ െ ׬ െߤሺݑ଴ െ ଵሻ൫1ିݑ െ ሺݑ଴ െ ଵሻ൯ିݑ
௫

଴
ݐ݀ ൌ ଵ

ଶ
൅ ఓ

ସ
 ,ݔ

        

ଶݑ ൌ ଵݑ െ ׬ െߤሺݑଵ െ ଴ሻ൫1ݑ െ ሺݑଵ െ ଴ሻ൯ݑ
௫

଴
ݐ݀ ൌ

ଵ

ଶ
൅

ఓ

ସ
ݔ െ

ఓయ

ସ଼
 ,ଷݔ

 

ଷݑ ൌ ଶݑ െ න െߤሺݑଶ െ ଵሻ൫1ݑ െ ሺݑଶ െ ଵሻ൯ݑ
௫

଴
ݐ݀ ൌ

1
2

൅
ߤ
4

ݔ െ
ଷߤ

48
ଷݔ ൅

ହߤ

480
ହݔ െ

଻ߤ

16128
 ,଻ݔ

 

ସݑ ൌ ଷݑ െ ׬ െߤሺݑଷ െ ଶሻ൫1ݑ െ ሺݑଷ െ ଶሻ൯ݑ
௫

଴
ݐ݀ ൌ ଵ

ଶ
൅ ఓ

ସ
ݔ െ ఓయ

ସ଼
ଷݔ ൅ ఓఱ

ସ଼଴
ହݔ െ ଵ଻ఓళ

଼଴଺ସ଴
଻ݔ ൅ ଵଽఓవ

ଵସହଵହଶ଴
 ,ଽݔ

 

ହݑ ൌ ସݑ െ ׬ െߤሺݑସ െ ଷሻ൫1ݑ െ ሺݑସ െ ଷሻ൯ݑ
௫

଴
ݐ݀ ൌ ଵ

ଶ
൅ ఓ

ସ
ݔ െ ఓయ

ସ଼
ଷݔ ൅ ఓఱ

ସ଼଴
ହݔ െ ଵ଻ఓళ

଼଴଺ସ଴
଻ݔ ൅ ଷଵఓవ

ଵସହଵହଶ଴
ଽݔ ൅                ڮ

 

This will yield the exact solution:  ݑሺݔሻ ൌ ݈݅݉௡՜∞ ሻݔ௡ሺݑ ൌ ௘ഋೣ

ଵା௘ഋೣ  , as obtained by Wazwaz  (2009) using 

VIM. 
 

Example 3: 
We apply MVIM to solve the following Riccati equation. 
 

′ݑ  ൌ ଶݑ െ ݑݔ2 ൅ ଶݔ ൅ ሺ0ሻݑ       ,   1 ൌ 1.                                                                                                           (14) 
 
Following the discussion presented above, we use the follow iteration formula 
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௡ାଵݑ ൌ ௡ݑ െ ׬ ሺെ

௫
଴

ሺݑ௡
ଶ െ ௡ିଵݑ

ଶ ሻ ൅ ௡ݑሺݐ2 െ ,ݐ௡ିଵሻሻ݀ݑ ݊ ൐ 0                                                                           (15) 
 
where ିݑଵ ൌ ଴ݑ   , 0 ൌ 1  and 
 

ଵݑ ൌ ଴ݑ െ න ሺെ
௫

଴
ሺݑ଴

ଶ െ ଵିݑ
ଶ ሻ ൅ ଴ݑሺݐ2 െ ଵሻିݑ െ ଶݐ െ 1ሻ݀ݐ. 

    
Therefore we can obtain the following successive approximation: 
 

ଵݑ ൌ ଴ݑ െ න ሺെ
௫

଴
ሺݑ଴

ଶ െ ଵିݑ
ଶ ሻ ൅ ଴ݑሺݐ2 െ ଵሻିݑ െ ଶݐ െ 1ሻ݀ݐ ൌ 1 ൅ ݔ2 ൅ ଶݔ െ

1
3

 ,ଷݔ

 

ଶݑ ൌ ଵݑ െ න ሺെ
௫

଴
ሺݑଵ

ଶ െ ଴ݑ
ଶሻ ൅ ଵݑሺݐ2 െ ݐ଴ሻሻ݀ݑ ൌ 1 ൅ ݔ2 ൅ ଶݔ ൅

1
3

ଷݔ െ
1
3

ସݔ െ
1
3

ହݔ െ
1
9

଺ݔ ൅
1

63
 ,଻ݔ

 

ଷݑ ൌ ଶݑ െ ׬ ሺെ
௫

଴
ሺݑଶ

ଶ െ ଵݑ
ଶሻ ൅ ଶݑሺݐ2 െ ൌ ݐଵሻሻ݀ݑ 1 ൅ ݔ2 ൅ ଶݔ ൅ ଷݔ ൅ ଵ

ଷ
ସݔ െ ଵ

ଵହ
ହݔ െ ଵ

ଽ
଺ݔ ൅         ڮ

 

ସݑ ൌ ଷݑ െ න ሺെ
௫

଴
ሺݑଷ

ଶ െ ଶݑ
ଶሻ ൅ ଷݑሺݐ2 െ ݐଶሻሻ݀ݑ ൌ 1 ൅ ݔ2 ൅ ଶݔ ൅ ଷݔ ൅ ସݔ െ

11
15

ହݔ ൅
19
45

଺ݔ ൅  ڮ

 

ହݑ ൌ ସݑ െ න ሺെ
௫

଴
ሺݑସ

ଶ െ ଷݑ
ଶሻ ൅ ସݑሺݐ2 െ ൌ ݐଷሻሻ݀ݑ 1 ൅ ݔ2 ൅ ଶݔ ൅ ଷݔ ൅ ସݔ ൅ ହݔ ൅ ଺ݔ ൅  ڮ

 ڭ
ሻݔ௡ሺݑ ൌ ݔ ൅ ሺ1 ൅ ݔ ൅ ଶݔ ൅ ଷݔ ൅ ସݔ ൅ ହݔ ൅ ଺ݔ ൅ ଻ݔ ൅ ڮ ሻ.                                                                 

 

This will yield the exact solution: ݑሺݔሻ ൌ ݔ ൅ ଵ

ଵି௫
|ݔ|     ,     ൏ 1 

 
3. Second Order ODEs: 

We now consider the second order linear ODE with constant coefficients and extend our analysis to this 
equation that given by 

 
ሻݔሺ′′ݑ ൅ ሻݔሺ′ݑܽ ൅ ሻݔሺݑܾ ൌ ݃ሺݔሻ , ሺ0ሻݑ ൌ ,   ߙ ሺ0ሻ′ݑ ൌ  (16)                                                                                ߚ

 
According to the VIM, the basic character of the method is to construct a correction functional for the 

equation, which reads (Wazwaz, 2009). 
 

ሻݔ௡ାଵሺݑ ൌ ሻݔ௡ሺݑ ൅ ׬ ௡ݑሻሺݐሺߣ
′′ ሺݐሻ ൅ ෤௡ݑܽ

′ ሺݐሻ ൅ ሻ௫ݐ෤௡ሺݑܾ
଴

െ ݃ሺݐሻሻ݀ݐ ,      ݊ ൒ 0                                                  (17) 
 
Calculating variation with respect to ݑ௡ yields the following stationary conditions (Wazwaz, 2009). 
 

1 െ ′ߣ ቚ
ݐ ൌ ݔ

ൌ ሻݐሺߣ    ,     0 ቚ
ݐ ൌ ݔ

ൌ ሻݐሺ′′ߣ   ,   0 ቚ
ݐ ൌ ݔ

ൌ 0 .                                                          (18) 

 
The Lagrange multiplier, therefore, can be identified as: ߣሺݐሻ ൌ ݐ െ  .ݔ
Substituting this value of the Lagrange multiplier into the functional (17) gives the iteration formula 
 

ሻݔ௡ାଵሺݑ ൌ ሻݔ௡ሺݑ ൅ ׬ ሺݐ െ ௡ݑሻሺݔ
′′ ሺݐሻ ൅ ௡ݑܽ

′௫
଴

ሺݐሻ ൅ ሻݐ௡ሺݑܾ െ ݃ሺݐሻሻ݀ݐ  , ݊ ൒ 0                                               (19) 
 
It is observed that there are repeated calculations in each step. To stop these repeats, the following 

modification on the recursive formula (19) is suggested 
 

ሻݔ௡ାଵሺݑ ൌ ሻݔ௡ሺݑ ൅ ׬ ሺݐ െ ௡ݑሻݔ
′′ ሺݐሻ݀ݐ

௫
଴ ൅ ׬ ሺݐ െ ௡ݑሻሺܽݔ

′௫
଴

ሺݐሻ ൅ ሻݐ௡ሺݑܾ െ  ݃ሺݐሻሻ݀(20)                                        .ݐ 
 
Integrating the integral by parts gives  
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׬ ሺݐ െ ௡ݑሻݔ
′′ ሺݐሻ݀ݐ ൌ െݑ௡ሺݔሻ ൅ ௡ሺ0ሻݑ ൅ ௡ݑݔ

′ ሺ0ሻ௫
଴

.                                                                                              (21)   
 
Substituting (21) into the (20) gives 
 

ሻݔ௡ାଵሺݑ ൌ ௡ሺ0ሻݑ ൅ ௡ݑݔ
′ ሺ0ሻ ൅ ׬ ሺݐ െ ௡ݑሻሺܽݔ

′௫
଴

ሺݐሻ ൅ ሻݐ௡ሺݑܾ െ ݃ሺݐሻሻ݀(22)                                                          .ݐ 
 
We can set  ݑ௡ሺ0ሻ ൅ ௡ݑݔ

′ ሺ0ሻ ൌ ߙ ൅ ݔߚ ൌ  ଴ , soݑ
 

ሻݔ௡ାଵሺݑ ൌ ଴ݑ ൅ ׬ ሺݐ െ ௡ݑሻሺܽݔ
′௫

଴
ሺݐሻ ൅ ሻݐ௡ሺݑܾ െ ݃ሺݐሻሻ݀(23)                                                                                 .ݐ 

 
To eliminate all the unneeded terms and the repeated computation in VIM we rewrite Eq. (23) in the 

following iteration formula 
 

ሻݔ௡ାଵሺݑ ൌ ଴ݑ ൅ න ሺݐ െ ௡ݑሻሺܽሺݔ
′ ሺݐሻ

௫

଴
െ ௡ିଵݑ

′ ሺݐሻሻ ൅ ܾሺݑ௡ሺݐሻ െ  ݐሻሻ݀ݐ௡ିଵሺݑ

൅ ׬ ሺݐ െ ௡ିଵݑሻሺܽݔ
′௫

଴
ሺݐሻ ൅ ሻݐ௡ିଵሺݑܾ െ ݃ሺݐሻሻ݀(24)                                                                                                 .ݐ 

 
But it is known from (23) that 
 

ሻݔ௡ሺݑ ൌ ଴ݑ ൅ ׬ ሺݐ െ ௡ିଵݑሻሺܽݔ
′௫

଴
ሺݐሻ ൅ ሻݐ௡ିଵሺݑܾ െ ݃ሺݐሻሻ݀(25)                                                                             .ݐ 

 
So the following MVIM is used 
 

ሻݔ௡ାଵሺݑ ൌ ௡ݑ ൅ ׬ ሺݐ െ ௡ݑሻሺܽሺݔ
′ ሺݐሻ

௫
଴

െ ௡ିଵݑ
′ ሺݐሻሻ ൅ ܾሺݑ௡ሺݐሻ െ ݊   ,ݐሻሻ݀ݐ௡ିଵሺݑ ൐ 0                                        (26)  

 
where  ݑ଴ ൌ ߙ ൅ ଵିݑ   ,  ݔߚ ൌ 0 and 
 

ሻݔଵሺݑ ൌ ଴ݑ ൅ න ሺݐ െ ଴ݑሻሺܽሺݔ
′ ሺݐሻ

௫

଴
െ ଵିݑ

′ ሺݐሻሻ ൅ ܾሺݑ଴ሺݐሻ െ ሻሻݐଵሺିݑ െ ݃ሺݐሻሻ݀ݐ. 

 
Notice that the final modified formula (26) cancels all the repeated calculation and unsettled terms in VIM.  
Now we apply the MVIM for solving two models of the second order ODEs, example 2 is a second order 

Euler equation. 
 

Example1:  
Solve the following second order inhomogeneous ODE. 
 

′′ݑ െ ′ݑ3 ൅ ݑ2 ൌ ݔ2 െ ሺ0ሻݑ   ,3 ൌ ሺ0ሻ′ݑ   ,1 ൌ 2.                                                                                              (27)  
 
For solving this equation by MVIM, follow the discussion presented above we can set  ିݑଵ ൌ 0 , ଴ݑ ൌ 1 ൅

 the iteration formula is given by .ݔ2
 

௡ାଵݑ ൌ ௡ݑ ൅ ׬ ሺݐ െ ሻݔ ቀെ3ሺݑ௡
′ െ ௡ିଵݑ

′ ሻ ൅ 2ሺݑ௡ െ ௡ିଵሻቁݑ ,ݐ݀ ݊ ൐ 0
௫

଴
                                                             (28) 

where  ݑଵ ൌ ଴ݑ ൅ ׬ ሺݐ െ ଴ݑሻሺെ3ሺݔ
′ െ ଵିݑ

′ ሻ ൅ 2ሺݑ଴ െ ଵሻିݑ െ ݐ2 ൅ 3ሻ݀ݐ
௫

଴
. 

 
Therefore we can obtain the following successive approximation: 
 

ሻݔ଴ሺݑ ൌ 1 ൅  ,ݔ2
 

ଵݑ ൌ ଴ݑ ൅ ׬ ሺݐ െ ଴ݑሻሺെ3ሺݔ
′ െ ଵିݑ

′ ሻ ൅ 2ሺݑ଴ െ ଵሻିݑ െ ݐ2 ൅ 3ሻ݀ݐ
௫

଴ ൌ 1 ൅ ݔ2 ൅
ଵ

ଶ
ଶݔ െ

ଵ

ଷ
     ,ଷݔ

 

ଶݑ ൌ ଵݑ ൅ ׬ ሺݐ െ ሻݔ ቀെ3ሺݑଵ
′ െ ଴ݑ

′ ሻ ൅ 2ሺݑଵ െ ଴ሻቁݑ ݐ݀
௫

଴
ൌ 1 ൅ ݔ2 ൅ ଵ

ଶ!
ଶݔ ൅ ଵ

ଷ!
ଷݔ െ ଵ

ଷ
ସݔ ൅ ଵ

ଷ଴
               ,ହݔ

 

ଷݑ ൌ ଶݑ ൅ න ሺݐ െ ሻݔ ቀെ3ሺݑଶ
′ െ ଵݑ

′ ሻ ൅ 2ሺݑଶ െ ଵሻቁݑ ,ݐ݀
௫

଴
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ൌ 1 ൅ ݔ2 ൅
1
2!

ଶݔ ൅
1
3!

ଷݔ ൅
1
4!

ସݔ െ
13
60

ହݔ ൅
7

180
଺ݔ െ

1
630

 ,଻ݔ

 ڭ

ሻݔ௡ሺݑ  ൌ ݔ ൅ ቀ1 ൅ ݔ ൅ ௫మ

ଶ!
൅ ௫య

ଷ!
൅ ௫ర

ସ!
൅ ௫ఱ

ହ!
൅ ڮ ቁ.                                                                                      

 
This will yield the exact solution: ݑሺݔሻ ൌ ݈݅݉௡՜∞ ሻݔ௡ሺݑ ൌ ݔ ൅ ݁௫ , as obtained by Wazwaz (2009) using 

VIM. 
 

Example 2:  
We apply the MVIM to solve the following second order Euler equation 
 

′′ݕଶݔ െ ݕݔ2 ′ ൅ ݕ2 ൌ 0    , ሺ1ሻݕ ൌ ሺ1ሻ′ݕ     ,2 ൌ ݔ       ,  3 ൐ 0                                                                           (29) 
 
Because of the singularity at x=0, we use the following transformation 
 

ݖ ൌ ݈݊ ֜ ݔ ݔ   ൌ ݁௭                                                                                                                                            (30) 
 
So that 
 

ௗ௬

ௗ௫
ൌ

ଵ

௫

ௗ௬

ௗ௭
,                    

ௗమ௬

ௗ௫మ ൌ
ଵ

௫మ

ௗమ௬

ௗ௭మ െ
ଵ

௫మ

ௗ௬

ௗ௭
.
                                                                                                                                            (31) 

 
Using (30) and (31) into (29) gives 
 

ௗమ௬

ௗ௭మ െ 3 ௗ௬

ௗ௭
൅ ݕ2 ൌ 0, ݖሺݕ ൌ 0ሻ ൌ 2 , ݕ      ′ሺݖ ൌ 0ሻ ൌ 3.                                                                                     (32) 

 
To solve Eq. (32) by the MVIM, follow the discussion presented above we can set  ିݕଵ ൌ 0 , ଴ݕ ൌ 2 ൅  .ݖ3
Then we use the iteration formula 
 

ሻݖ௡ାଵሺݕ ൌ ሻݖ௡ሺݕ ൅ ׬ ሺݐ െ ሻ௭ݖ
଴

ቀെ3ሺݕ௡
′ െ ௡ିଵݕ

′ ሻ ൅ 2ሺݕ௡ െ ௡ିଵሻቁݕ , ݐ݀ ݊ ൒ 0.                                                   (33) 

 
Therefore by the above iteration formula, we can obtain following approximations 
 

ሻݖଵሺݕ ൌ ሻݖ଴ሺݕ ൅ ׬ ሺݐ െ ሻ௭ݖ
଴

ቀെ3ሺݕ଴
′ െ ଵିݕ

′ ሻ ൅ 2ሺݕ଴ െ ଵሻቁିݕ ݐ݀ ൌ 2 ൅ ݖ3 ൅ ହ

ଶ
ଶݖ െ   ଷݖ

 

ൌ ቀ1 ൅ ݖ ൅ ௭మ

ଶ!
ቁ ൅ ሺ1 ൅ ݖ2 ൅ ଶሻݖ2 െ   ,ଷݖ

 

ሻݖଶሺݕ ൌ ሻݖଵሺݕ ൅ න ሺݐ െ ሻݖ
௭

଴
ቀെ3ሺݕଵ

′ െ ଴ݕ
′ ሻ ൅ 2ሺݕଵ െ ଴ሻቁݕ ݐ݀ ൌ 2 ൅ ݖ3 ൅

5
2

ଶݖ ൅
3
2

ଷݖ െ
7
6

ସݖ ൅
1

10
 ହݖ

 

ൌ ቆ1 ൅ ݖ ൅
ଶݖ

2!
൅

ଷݖ

3!
ቇ ൅ ൬1 ൅ ݖ2 ൅ ଶݖ2 ൅

8
3!

ଷ൰ݖ ൅  ڮ

 

ሻݖଷሺݕ ൌ ሻݖଶሺݕ ൅ ׬ ሺݐ െ ሻ௭ݖ
଴

ቀെ3ሺݕଶ
′ െ ଵݕ

′ ሻ ൅ 2ሺݕଶ െ ଵሻቁݕ                    ݐ݀

 

ൌ 2 ൅ ݖ3 ൅
5
2

ଶݖ ൅
3
2

ଷݖ ൅
17
24

ସݖ െ
17
20

ହݖ ൅
23

180
଺ݖ െ

1
210

 ଻ݖ

 

ൌ ቆ1 ൅ ݖ ൅
ଶݖ

2!
൅

ଷݖ

3!
൅

ସݖ

4!
ቇ ൅ ൬1 ൅ ݖ2 ൅ ଶݖ2 ൅

8
3!

ଷݖ ൅
16
4!

ସ൰ݖ ൅  ڮ

 

ሻݖସሺݕ ൌ ሻݖଷሺݕ ൅ න ሺݐ െ ሻݖ
௭

଴
ቀെ3ሺݕଷ

′ െ ଶݕ
′ ሻ ൅ 2ሺݕଷ െ ଶሻቁݕ  ݐ݀
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ൌ 2 ൅ ݖ3 ൅ ହ

ଶ
ଶݖ ൅ ଷ

ଶ
ଷݖ ൅ ଵ଻

ଶସ
ସݖ ൅ ଵଵ

ସ଴
ହݖ െ ଵ଻

ଷ଺
଺ݖ ൅ ଶ

ଶଵ
଻ݖ െ ଶ

ଷଵହ
଼ݖ ൅ ଵ

଻ହ଺଴
                                                ଽݖ

 

ൌ ቀ1 ൅ ݖ ൅ ௭మ

ଶ!
൅ ௭య

ଷ!
൅ ௭ర

ସ!
൅ ௭ఱ

ହ!
ቁ ൅ ቀ1 ൅ ݖ2 ൅ ଶݖ2 ൅ ଼

ଷ!
ଷݖ ൅ ଵ଺

ସ!
ସݖ ൅ ଷଶ

ହ!
ହቁݖ ൅                                                                ڮ

 
The last approximation convergences to the exact solution: ݕሺݖሻ ൌ lim௡՜∞ ሻݔ௡ሺݕ ൌ ݁௭ ൅ ݁ଶ௭. 
Recall that  ݖ ൌ ݈݊ ሻݔሺݕ :then this will yield the exact solution , ݔ ൌ ݔ ൅  ଶ, which are the same solution asݔ

obtained by Wazwaz (2009) with VIM, but in this method as it is shown, reduces the size of calculation in 
comparison with VIM. 

 
4. Third Order ODEs: 

In this section, we consider the third order linear ODE with constant coefficients and apply the MVIM for 
solving this equation that given by 

 
′′′ݑ  ൅ ′′ݑܽ ൅ ′ݑܾ ൅ ݑܿ ൌ ݃ሺݔሻ,   ݑሺ0ሻ ൌ ሺ0ሻ′ݑ      , ߙ   ൌ ሺ0ሻ′′ݑ       , ߚ  ൌ  (34)                                                      .ߛ

 
According to the VIM, the basic character of the method is to construct a correction functional for the 

equation, which reads (Wazwaz, 2009). 
 

ሻݔ௡ାଵሺݑ ൌ ሻݔ௡ሺݑ ൅ ׬ ௡ݑሻሺݐሺߣ
′′′ሺݐሻ ൅ ෤௡ݑܽ

′′ ሺݐሻ ൅ ෤௡ݑܾ
′ ሺݐሻ ൅ ሻݐ෤௡ሺݑܿ

௫
଴

െ  ݃ሺݐሻሻ݀ݐ  ,   ݊ ൒ 0                                   (35) 
 
We take the variation of both sides of (35) with respect to the independent variable ݑ௡  and notice that 
෤௡ݑߜ ൌ ෤௡ݑߜ

′ ൌ ෤௡ݑߜ
′′ ൌ 0 , Then we find 

  
ሻݔ௡ାଵሺݑߜ ൌ ሻݔ௡ሺݑߜ ൅ ׬൫ߜ ௡ݑሻݐሺߣ

′′௫
଴

ሺݐሻ݀ݐ൯.                                                                                                       (36)    
 
By taking the integral of (36) by parts three times and by using the extremum condition of ݑ௡ାଵ the 

following stationary conditions yields:    ߣ′′′ ൌ 0   ,  1 ൅ ′′ߣ ቚ
ݐ ൌ ݔ

ൌ ሻݐሺߣ  ,   0 ቚ
ݐ ൌ ݔ

ൌ 0 .  

 

The Lagrange multiplier, therefore, can be identified as: ߣሺݐሻ ൌ ିଵ

ଶ!
ሺݐ െ  .ሻଶݔ

 
Substituting this value of the Lagrange multiplier into the functional (35) and delete the restriction on 

,௡ݑ ௡ݑ
′ , ௡ݑ

′′  this leads to: 
 

ሻݔ௡ାଵሺݑ ൌ ሻݔ௡ሺݑ െ ଵ

ଶ!
׬ ሺݐ െ ௡ݑሻଶሺݔ

′′′ሺݐሻ ൅ ௡ݑܽ
′′ ሺݐሻ ൅ ௡ݑܾ

′ ሺݐሻ ൅ ሻݐ௡ሺݑܿ
௫

଴
െ ݃ሺݐሻሻ݀(37)                                        .ݐ 

 
In this method there are repeated calculation in each step, to cancel some of the repeated calculation, the 

iteration formula (37) can be handled as follows. 
 

ሻݔ௡ାଵሺݑ ൌ ሻݔ௡ሺݑ െ ଵ

ଶ!
׬ ሺݐ െ ௡ݑሻଶݔ

′′′ሺݐሻ݀ݐ െ ଵ

ଶ!
׬ ሺݐ െ ሻଶ௫ݔ

଴
ሺܽݑ௡

′′ ሺݐሻ ൅
௫

଴
௡ݑܾ

′ ሺݐሻ ൅ ሻݐ௡ሺݑܿ െ ݃ሺݐሻሻ݀(38)                ݐ 

 
Therefore 
 

ሻݔ௡ାଵሺݑ ൌ ௡ሺ0ሻݑ ൅ ௡ݑݔ
′ ሺ0ሻ െ

௫మ

ଶ
௡ݑ
′′ ሺ0ሻ െ 

ଵ

ଶ!
׬ ሺݐ െ ௡ݑሻଶቀܽݔ

′′ ሺݐሻ ൅ ௡ݑܾ
′ ሺݐሻ݀ݐ ൅ ሻݐ௡ሺݑܿ െ ݃ሺݐሻቁ݀ݐ.

௫
଴               (39) 

 

We can set   ݑ௡ሺ0ሻ ൅ ௡ݑݔ
′ ሺ0ሻ െ

௫మ

ଶ
௡ݑ
′′ ሺ0ሻ ൌ α ൅ βݔ ൅ ߛ

௫మ

ଶ
ൌ   ଴ soݑ

   

ሻݔ௡ାଵሺݑ ൌ ሻݔ଴ሺݑ െ ଵ

ଶ!
׬ ሺݐ െ ሻଶ௫ݔ

଴
ቀܽݑ௡

′′ ሺݐሻ ൅ ௡ݑܾ
′ ሺݐሻ ൅ ሻݐ௡ሺݑܿ െ ݃ሺݐሻቁ݀(40)                                                     .ݐ 

 
 Via the iteration formula (40) some repeated computation are cancelled. 
 To eliminate all repeated computation, let us rewrite Eq. (40) in the following iteration formula: 

 

ሻݔ௡ାଵሺݑ ൌ ሻݔ଴ሺݑ െ ଵ

ଶ!
׬ ሺݐ െ ሻଶ௫ݔ

଴
ቀܽሺݑ௡

′′ ሺݐሻ െ ௡ିଵݑ
′′ ሺݐሻቁ ൅ ܾሺݑ௡

′ ሺݐሻ െ ௡ିଵݑ
′ ሺݐሻሻ ൅ ܿሺݑ௡ሺݐሻ െ        ݐሻሻ݀ݐ௡ିଵሺݑ

െ ଵ

ଶ!
׬ ሺݐ െ ሻଶ௫ݔ

଴
ቀܽݑ௡ିଵ

′′ ሺݐሻ ൅ ௡ିଵݑܾ
′ ሺݐሻ ൅ ሻݐ௡ିଵሺݑܿ െ ݃ሺݐሻቁ  (41)                                                                        .ݐ݀
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But it is known from (40) that 
 

ሻݔ௡ሺݑ ൌ ሻݔ଴ሺݑ െ
ଵ

ଶ!
׬ ሺݐ െ ሻଶ௫ݔ

଴
ቀܽݑ௡ିଵ

′′ ሺݐሻ ൅ ௡ିଵݑܾ
′ ሺݐሻ ൅ ሻݐ௡ିଵሺݑܿ െ ݃ሺݐሻቁ   (42)                                              .ݐ݀

 
Substituting by (42) in (41), we get 
   

ሻݔ௡ାଵሺݑ ൌ ሻݔ௡ሺݑ െ
ଵ

ଶ!
׬ ሺݐ െ ሻଶ௫ݔ

଴ ሺܽሺ ሺݑ௡
′′ ሺݐሻ െ ௡ିଵݑ

′′ ሺݐሻሻ ൅ ܾሺݑ௡
′ ሺݐሻ െ ௡ିଵݑ

′ ሺݐ ൅ ܿሺݑ௡ሺݐሻ െ   ሻ,                  (43)ݐሻሻሻ݀ݐ௡ିଵሺݑ
 

where   ିݑଵ ൌ 0 , ଴ݑ  ൌ ߙ ൅ ݔߚ ൅ ߛ
௫మ

ଶ
    and ݑଵ is obtained from 

 

ሻݔଵሺݑ ൌ ሻݔ଴ሺݑ െ
1
2!

න ሺݐ െ ሻଶݔ
௫

଴
ሺܽሺݑ଴

′′ሺݐሻ െ ଵିݑ
′′ ሺݐሻሻ ൅ ܾሺݑ଴

′ ሺݐሻ െ ଵିݑ
′ ሺݐሻሻ ൅ ܿሺݑ଴ሺݐሻ െ ሻሻݐଵሺିݑ െ ݃ሺݐሻሻ݀ݐ. 

 
This final modified formula (43) cancels all the repeated calculation and terms, which are not needed. 
Now, we apply the MVIM for solving a third order ODE. 
 

Example1: 
we consider the following third order inhomogeneous ODE 
 

′′′ݑ െ ′′ݑ2 ൅ ′ݑ ൌ 1   , ሺ0ሻݑ ൌ 0, ሺ0ሻ′ݑ ൌ 2, ሺ0ሻ′′ݑ ൌ 2.                                                                                       (44) 
 
For solving this equation by MVIM, follow the discussion presented above we can set  ିݑଵ ൌ 0 and            

଴ݑ ൌ ݔ2 ൅   ଶ , then the following iteration formula obtainݔ
 

௡ାଵݑ ൌ ௡ݑ െ ଵ

ଶ
׬ ሺݐ െ ሻଶ௫ݔ

଴
ቀെ2ሺݑ௡

′′ െ ௡ିଵݑ
′′ ሻ ൅ ሺݑ௡

′ െ ௡ିଵݑ
′ ሻቁ ,ݐ݀ ݊ ൐ 0                                                            (45) 

 

where  ݑଵ ൌ ଴ݑ െ ଵ

ଶ
׬ ሺݐ െ ሻଶ௫ݔ

଴
ሺെ2ሺݑ଴

′′ െ ଵିݑ
′′ ሻ ൅ ሺݑ଴

′ െ ଵିݑ
′ ሻ െ 1ሻ݀ݐ 

 
 Therefore, we can obtain the following successive approximation: 

 
଴ݑ ൌ ݔ2 ൅  ,ଶݔ
 

ଵݑ ൌ ଴ݑ െ
ଵ

ଶ
׬ ሺݐ െ ሻଶ௫ݔ

଴
ሺെ2ሺݑ଴

′′ െ ଵିݑ
′′ ሻ ൅ ሺݑ଴

′ െ ଵିݑ
′ ሻ െ 1ሻ݀ݐ ൌ ݔ2 ൅ ଶݔ ൅

ଵ

ଶ
ଷݔ െ

ଵ

ଵଶ
 , ସݔ

 

ଶݑ  ൌ ଵݑ െ ଵ

ଶ
׬ ሺݐ െ ሻଶ௫ݔ

଴
ቀെ2ሺݑଵ

′′ െ ଴ݑ
′′ሻ ൅ ሺݑଵ

′ െ ଴ݑ
′ ሻቁ ݐ݀ ൌ ݔ2 ൅ ଶݔ ൅ ଵ

ଶ
ଷݔ െ ଵ

ଷ!
ସ െݔ ଻

ଵଶ଴
ହݔ ൅ ଵ

ଷ଺଴
 ,଺ݔ

 

ଷݑ ൌ ଶݑ െ
1
2

න ሺݐ െ ሻଶݔ
௫

଴
ቀെ2ሺݑଶ

′′ െ ଵݑ
′′ሻ ൅ ሺݑଶ

′ െ ଵݑ
′ ሻቁ  ݐ݀

 

ൌ ݔ2 ൅ ଶݔ ൅ ଵ

ଶ
ଷݔ െ ଵ

ଷ!
ସ ൅ݔ ଵ

ସ!
ହݔ െ ଵ

ସ଴
଺ݔ ൅ ଵଵ

ହ଴ସ଴
଻ݔ െ ଵ

ଶ଴ଵ଺଴
 , ଼ݔ

 
           ڭ

ሻݔ௡ሺݑ ൌ ݔ ൅ ݔ ቀ1 ൅ ݔ ൅
ଵ

ଶ!
ଶݔ ൅

ଵ

ଷ!
ଷݔ ൅

ଵ

ସ!
ସݔ ൅ ڮ ቁ. 

 
Consequently this will yield the exact solution: ݑሺݔሻ ൌ ሺ1ݔ ൅ ݁௫ሻ. In this method as it is shown, the source 

inhomogeneous term is only used for the first iteration step (ݑଵሻ and this method reduces the size of calculation 
in comparison with VIM (Wazwaz, 2009). 
 
5. The Lane-Emden-Fowler Equation of Index M: 

We close our study by using the MVIM to the Lane-Emden-Fowler equation of index m (X. Shang, 2009; 
Wazwaz, 2002; 2005) that given by    
 

ݕ ′′ሺݔሻ ൅ ଶ

௫
ݕ ′ሺݔሻ ൅ ݂ܽሺݔሻݕ௠ ൌ 0    , ሺ0ሻݕ ൌ 1 , ሺ0ሻ′ݕ      ൌ 0                                                                             (46) 
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For ݂ሺݔሻ ൌ 1  and ܽ ൌ 1, Eq. (46) is reduced to the standard Lane-Emden equation. However, for ݂ሺݔሻ ൌ

ܽ ,௡ݔ ൌ 1 Eq.(46) gives the Emden-Fowler equation of index m. for physical interest, the polytrophic index m 
lies between 0 and 5 (X. Shang, 2009) . Notice that this equation is only linear for ݉ ൌ 0 and ݉ ൌ 1. Otherwise 
it is nonlinear. 
 
5.1. The Lane-Emden Equation of Index M: 

     The Lane-Emden equation of index m is given by 

ݕ ′′ሺݔሻ ൅ ଶ

௫
ݕ ′ሺݔሻ ൅ ௠ݕ ൌ ሺ0ሻݕ       ,  0 ൌ 1  , ݕ        ′ሺ0ሻ ൌ 0                                                                                 (47) 

 
This equation was used to model the thermal behaviour of a spherical cloud of gas acting under the mutual 

attraction of its molecules and subject to the classical lows of thermodynamics. 
Because of the singularity at x=0, we use the following transformation 

ሻݔሺݑ ൌ ሻݔሺݕݔ  ֜ ሻݔሺݕ ൌ ௨ሺ௫ሻ

௫
 .                                                                                                                           (48) 

So that 

ሻݔሺ′ݑ   ൌ ݕݔ ′ ൅ ֜  ݕ ݕ ′ሺݔሻ ൌ ௨′ሺ௫ሻ

௫
െ ௨ሺ௫ሻ

௫మ   ,             

ሻݔሺ′′ݑ              ൌ ݕݔ ′′ ൅ ݕ2 ′ ֜ ݕ ′′ሺݔሻ ൌ ௨′′ሺ௫ሻ

௫
െ 2 ௨′ሺ௫ሻ

௫మ ൅ 2 ௨ሺ௫ሻ

௫య .
                                                                          (49) 

 
Using (48) and (49) into (47) gives 
 
′′ݑ ൅ ௠ݑଵି௠ݔ ൌ 0          ݉ ൌ 0,1,2, … ሺ0ሻݑ   ,    ൌ 0, ሺ0ሻ′ݑ       ൌ 1                                                             (50) 
 
To solve this equation by The MVIM following the discussion presented before for second order equations 

with constant coefficients the following iteration formula is obtained: 
ሻݔ௡ାଵሺݑ ൌ ሻݔ௡ሺݑ ൅ ׬ ሺݐ െ ሻ௫ݔ

଴
൫ݐଵି௠ሺݑ௡

௠ െ ௡ିଵݑ
௠ ሻ൯݀ݐ, ݊ ൒ 0                                                                           (51) 

  
where ିݑଵ ൌ 0 , ଴ݑ ൌ  Therefore we can obtained the following successive approximation .ݔ

ሻݔ଴ሺݑ ൌ      ,ݔ
 

ሻݔଵሺݑ ൌ ሻݔ଴ሺݑ ൅ ׬ ሺݐ െ ሻ௫ݔ
଴ ൫ݐଵି௠ሺݑ଴

௠ െ ଵିݑ
௠ ሻ൯݀ݐ ൌ ݔ െ

ଵ

଺
 ,ଷݔ

 

ሻݔଶሺݑ ൌ ሻݔଵሺݑ ൅ න ሺݐ െ ሻݔ
௫

଴
൫ݐଵି௠ሺݑଵ

௠ െ ଴ݑ
௠ሻ൯݀ݐ ൌ ݔ െ

1
6

ଷݔ ൅
݉

120
 ,ହݔ

 

ሻݔଷሺݑ ൌ ሻݔଶሺݑ ൅ ׬ ሺݐ െ ሻ௫ݔ
଴

൫ݐଵି௠ሺݑଶ
௠ െ ଵݑ

௠ሻ൯݀ݐ ൌ ݔ െ ௫య

଺
൅ ௠

ଵଶ଴
ହݔ െ ௠ሺ଼௠ିହሻ

ଷሺ଻!ሻ
 ,଻ݔ

           

ሻݔସሺݑ ൌ ሻݔଷሺݑ ൅ ׬ ሺݐ െ ሻ௫ݔ
଴

൫ݐଵି௠ሺݑଷ
௠ െ ଶݑ

௠ሻ൯݀ݐ ൌ ݔ െ ௫య

଺
൅ ௠

ଵଶ଴
ହݔ െ ௠ሺ଼௠ିହሻ

ଷሺ଻!ሻ
଻ݔ ൅

௠൫଻଴ିଵ଼ଷ௠ାଵଶଶ௠మ൯

ଽሺଽ!ሻ
ଽݔ ൅    ڮ

 

Recall that  ݕሺݔሻ ൌ ௨ሺ௫ሻ

௫
 . This gives the series solution 

 

ሻݔሺݕ ൌ 1 െ ௫మ

଺
൅ ௠

ଵଶ଴
ସݔ െ ௠ሺ଼௠ିହሻ

ଷሺ଻!ሻ
଺ݔ ൅

௠൫଻଴ିଵ଼ଷ ௠ାଵଶଶ௠మ൯

ଽሺଽ!ሻ
଼ݔ ൅  (52)                                                                  ڮ

 
Exact Solutions exist only for three cases, namely: 
 
Case (1): For ݉ ൌ 0, by substituting  ݉ ൌ 0 in (52)the exact solution is given by 
 

ሻݔሺݕ ൌ 1 െ
௫మ

଺
,                                                                                                                                           

 
Case (2): For ݉ ൌ 1, by substituting  ݉ ൌ 1 in (52) the exact solution is given by 
 

ሻݔሺݕ ൌ 1 െ ଵ

଺
ଶݔ ൅ ଵ

ଵଶ଴
ସݔ െ ଵ

଻!
଺ݔ ൅ ଵ

ଽ!
଼ݔ ൅ ڮ ൌ ௦௜௡ ௫

௫
 ,                                                                             

 
Case (3): For ݉ ൌ 5, by substituting  ݉ ൌ 5 in (52) the exact solution is given by 
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ሻݔሺݕ ൌ 1 െ ଵ

଺
ଶݔ ൅ ଵ

ଶସ
ସݔ െ ହ

଻ହ଺
଺ݔ ൅ ହ

଻଻଻଺
଼ݔ ൅ ڮ ൌ ቀ1 ൅ ௫మ

ଷ
ቁ

షభ
మ

,                                                               

 
Which are the same solutions as obtained by Shang (2009) and Wazwaz (2009). with VIM, but in this 

method the size of calculation reduces. For other cases, only the series solution are obtainable. 
 
5.2. The Emden-Fowler Equation of Index M: 

Many problem in mathematical physics and astrophysics can be modelled by the Emden-Fowler equation of 
index m (Shang, 2009; Wazwaz, 2002; 2005) that given by 
 

ݕ ′′ሺݔሻ ൅ ଶ

௫
ݕ ′ሺݔሻ ൅ ௠ݕ௡ݔܽ ൌ 0, ሺ0ሻݕ ൌ 1 , ሺ0ሻ′ݕ   ൌ 0                                                                                     (53) 

 
It will be shown by using the MVIM that exact solutions exist only for m=0,1and5. 
Because of the singularity at x=0, we use the transformation (48) and (49) into (53) that gives  

 
′′ݑ ൅ ௠ݑଵା௡ି௠ݔܽ ൌ 0   ሺ݉ ൌ 0,1, … ሻ, ሺ0ሻݑ ൌ ሺ0ሻ′ݑ   ,  0 ൌ 1.                                                                         (54) 

 
For solving Eq. (54) by the MVIM, based on the discussion presented above for second order equations 

with constant coefficients, the following iteration formula is obtained 
 
ሻݔ௡ାଵሺݑ ൌ ሻݔ௡ሺݑ ൅ ׬ ሺݐ െ ሻ௫ݔ

଴
൫ܽݐଵା௡ି௠ሺݑ௡

௠ െ ௡ିଵݑ
௠ ሻ൯݀(55)                                                                               ,ݐ 

 
where ିݑଵ ൌ ଴ݑ   , 0 ൌ  .ݔ
This in turn gives the successive approximations 
 

଴ݑ ൌ  ,ݔ

ሻݔଵሺݑ ൌ ሻݔ଴ሺݑ ൅ න ሺݐ െ ሻݔ
௫

଴
൫ܽݐଵା௡ି௠ሺݑ଴

௠ െ ଵିݑ
௠ ሻ൯݀ݐ ൌ ݔ െ

ܽ
ሺ3 ൅ ݊ሻሺ2 ൅ ݊ሻ

 ,ଷା௡ݔ

           

ሻݔଶሺݑ ൌ ሻݔଵሺݑ ൅ ׬ ሺݐ െ ଵݑଵା௡ି௠ሺݐሻ൫ܽݔ
௠ െ ଴ݑ

௠ሻ൯
௫

଴
ൌ ݐ݀ ݔ െ ௔

ሺ௡ାଷሻሺ௡ାଶሻ
௡ାଷݔ ൅ ௔మ௠

ଶሺଶ௡ାହሻሺ௡ାଷሻሺ௡ାଶሻమ   ,ଶ௡ାହݔ

ሻݔଷሺݑ ൌ ሻݔଶሺݑ ൅ න ሺݐ െ ଶݑଵା௡ି௠ሺݐሻ൫ܽݔ
௠ െ ଵݑ

௠ሻ൯
௫

଴
 ݐ݀

ൌ ݔ  െ ௔

ሺ௡ାଷሻሺ௡ାଶሻ
௡ାଷݔ ൅ ௔మ௠

ଶሺଶ௡ାହሻሺ௡ାଷሻሺ௡ାଶሻమ ଶ௡ାହݔ   െ ௔య௠ሺ଼௠ାଷ௠௡ିଶ௡ିହሻ

଺ሺଷ௡ା଻ሻሺଶ௡ାହሻሺ௡ାଷሻమሺ௡ାଶሻయ ଷ௡ା଻ݔ  ൅                              ڮ

 

Recall that  ݕሺݔሻ ൌ
௨ሺ௫ሻ

௫
 . This gives the series solution 

ሻݔሺݕ ൌ 1 െ ௔

ሺ௡ାଷሻሺ௡ାଶሻ
௡ାଶݔ ൅ ௔మ௠

ଶሺଶ௡ାହሻሺ௡ାଷሻሺ௡ାଶሻమ ଶ௡ାସݔ   െ ௔య௠ሺ଼௠ାଷ௠௡ିଶ௡ିହሻ

଺ሺଷ௡ା଻ሻሺଶ௡ାହሻሺ௡ାଷሻమሺ௡ାଶሻయ ଷ௡ା଺ݔ ൅  (56)                     ڮ

From the (56) we conclude that ݊ ് െ3, െ2, െ ହ

ଶ
, െ ଻

ଷ
, െ ଽ

ସ
, … 

Exact Solution Exist only for three cases, namely: 
Case (1): For m=0, n=0, the exact solution is given by: ݕሺݔሻ ൌ 1 െ ௔

଺
 ,ଶݔ

Case (2): For m=1, n=0, the exact solution is given by: ݕሺݔሻ ൌ ௦௜௡ √௔௫

√௔  ௫
 , 

Case (3): For m=5, n=0, the exact solution is given by: ݕሺݔሻ ൌ ቀ1 ൅ ௔௫మ

ଷ
ቁ

షభ
మ

, 
which are the same solutions as obtained by Shang (2009) and Wazwaz, (2009) but in this method the size 

of calculation reduces. 
 
Conclusion : 

The modified variational iteration method is remarkably effective for solving various types of ODEs of 
distinct orders. In this work, we employed the modified variational iteration method to investigate linear and 
nonlinear ordinary differential equations. This method is a very promoting method, which will be certainly 
found widely applications. 

By analyzing the obtained results and procedures used in modified variational iteration method and 
variational iteration method we observed that the modified variational iteration method facilitates the 
computational work and minimizes it and this method cancels all the unsettled term in variational iteration 
method, also this method is faster than variational iteration method and save time. 
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