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Abstract: In this work, the modified variational iteration method (MVIM) is applied to solve linear
and nonlinear ordinary differential equations such as Lane-Emden, Emden-Fowler and Riccati
equations. The MVIM provides a sequence of functions which is convergent to the exact solution and
is capable to cancel some of the repeated calculations and reduce the cost of operation in comparison
with VIM. The method is very simple and easy.
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INTRODUCTION

The variational iteration method was first proposed by Ji-Huan He to find the solution of a differential
equation using an iterative scheme (He J.H., 1998; 2000; 2006; 2007; 2008). Many researches in variety of
scientific fields applied this method and showed the VIM has many merits and to be reliable for a variety of
scientific application, linear and nonlinear as well (Abdou M.A. 2005; Abulwafa, 2006; S. Momani, 2005; 2006;
Wazwaz, 2007; 2008).

Insight into the solution procedure of the VIM shows some disadvantages, namely, repeated computation of
redundant terms, which wastes time and effort. Abassy et al., proposed the modified variational iteration method
and used it to give an approximate power series solutions for some well-known nonlinear problems (Abassy,
2007).

The modified variational iteration method (MVIM) facilitates the computational work and minimizes it.
This method can effectively improve the speed of convergence (Abassy, 2007).

In this work, we aim to show the power of MVIM in handling various types of ODEs of distinct orders. In
fact this paper is an extension of the work done in (Wazwaz, 2009) which shows a new application of MVIM for
linear and nonlinear homogeneous and inhomogeneous ODEs.

2. First Order ODEs:
First, we consider the first order lincar ODE of a standard form

u+p@u =qx), u(0)=a. (1

According to the VIM, the basic character of the method is to construct a correction functional for the
equation, which reads (Wazwaz, 2009):

Uy (1) = 1 () + [ A0 (un (1) + (O (1) — q(0))lt, @
where 4 is called a general Lagrange multiplier (M. Inokuti, 1978), which can be identified optimally via

variational theory, ii,, denotes a restricted variation, i.e. i, = 0.
Calculating variation with respect to u,,, the following stationary conditions are obtained (Wazwaz, 2009).

1+2,.,=0, 2|_. =0 3)

The Lagrange multiplier, therefore, can be identified as 4 = —1.
By Substituting the identified multiplier into Eq. (2) the following iteration formula can be obtained as:
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Ung1 (1) = 1, (%) = [ @n(8) +P(E)un () — q(&))d. “4)
Recall that: u(x) = limy_ Uy (x).

In this method, there are repeated calculation in each step, to cancel some of the repeated calculation, the
iteration formula (4) can be handled as follows

Uns1 (%) = U () — [T up(®) dt — [ (p(®)ua () — q(1)) dt.
Therefore

Uns1 (%) = un(0) = [ (P(O)un(t) — (1)) dt. )
We can set u,(0) = uy = a, so
Un1 () = ug — [7 P(Bun(t) — q(0) dt. (6)

Via the iteration formula (6) some repeated computation are cancelled.
To eliminate all repeated computation, let us rewrite Eq. (6) in the following iteration formula:

Ui () = g — [ P(E) () — Uy () dE — [ (P(D)un1 (£) — q (D)) dt. (7)
But it is known from (6) that
Un(2) = ttg = [} P(Oup-1 () — q()) dit. ®)
Substituting by (8) in (7), we obtain
Ung1 (1) =y — o p(O) () — Uy ())dE, 1> 0 )
where u_; = 0, uy = u(0) = a and u, is obtained from
uy =up — f, (&) (1o () — u_1(£)) — q(t))dt.

This final modified formula (9) cancels all the repeated calculation and terms, which are not needed.
Now, we apply the MVIM for solving first order ODEs. Examples 2 and 3 are two well-known first order
nonlinear equations, namely the logistic differential equation and the Riccati equation.

Notice that for nonlinear problems, the MVIM is not require specific treatment and approaches in a like

manner to that used for linear problems.

Examplel:
Now we consider the following first order inhomogeneous ODE

u—-—u=e*, u(0) =0 (10)

For solving this equation by MVIM, follow the discussion presented above we can set ug =0 ,u_; =0
and we use the follow iteration formula

Uy =y = J (— Q= Up-y)) dt,n > 0 (11)
where  u; = uy — fox(—(uo —u_;) —eb)dt.
Therefore by the above iteration formula, we can obtain following approximations

U = Up — f:(_(uo —u_)—e)dt=e*-1,
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x2

X
uz=u1—f (—(ul—uo))dtzZe"—x—Z=2<1+x+2l
0 !

)—x—2=x(1+x),
* x 1 2
u3=u2—f (—(uz—ul))dt=3e —Zx—Ex -3
0
x2 %3 1 5 x2
=3(1+x+;+;)—2x—;x —3=x(1+x+;),

b
1
u4=u3—f (—(u3—uz))dt=4e"—3x—x2—gx3—4
0

x? x® x* 1 x? x3
— _ _ | = w2 a3 p = o4
—4<1+x+2!+3!+4!> 3x —x g X 4—x<1+x+2!+3!>

x%  x3 X
un(x)=x(1+x+;+;+---+z).

Obtained by using the Taylor series for the obtained approximation. Recall that the exact solution can be
obtained by using: u(x) = lim,,_,, u,(x) = xe*, which are the same solutions as obtained by Wazwaz (2009)
with VIM, but in this method as it is shown, the source inhomogeneous term is only used for the first iteration
step (u;) and this method reduces the size of calculation in comparison with VIM.

Example2:
Now we solve the follow nonlinear logistic differential equation by the MVIM:
u=uu(l-w), u()== (12)

2
where u > 0 is a positive constant.

Follow the discussion presented above, we use the iteration formula
Uy = Uy — fox —pQup = Up—1)(1 = (up — uy_q)) dt,n > 0. (13)

Starting with initial approximation u, = % and u_; = 0 and by the iteration formula (13), we can obtain
the following approximation:

Uy =Up — f: —p(uo — u_l)(l — (up — u_l)) dt = ; + 4

Ly,
4

1 3
Uy = Uy — fox —puuy —up)(1 — (uy —up))dt = ;+%x —Z—Bxs,

3 5 7

x 1 pu  p © 2
Uz = Uy —f —uCuy —u))(1—(uy —uy))dt ==+-x ——x3 +—x> — x7,
o ( ) 2 4 48 480 16128
X 1 u ;1.3 3 #5 5 17;17 7 19;19 9
Uy = Uz = fO —p(us — uZ)(l — (u3 _uZ)) de = 2T e T %% T T sen 1451520 °
x 1 u N S A I 314° o
U = Uy — fo —u(uy — u3)(1 — (uy —u3)) dt = 2T~ %X Yo X T seern Tes0X T
This will yield the exact solution: u(x) = lim,_,, u,(x) = % , as obtained by Wazwaz (2009) using
VIM.
Example 3:
We apply MVIM to solve the following Riccati equation.
u=u?-2xu+x?+1, u()=1 (14)

Following the discussion presented above, we use the follow iteration formula
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Unar = Up — f (= W2 = u2_y) + 2t(y, — Up_y))dt,n > 0

whereu_; =0, uy, =1 and
X
U = Uy — f (— 3 —u?)) + 2t(ug —u_q) — t2 — 1)dt.
0
Therefore we can obtain the following successive approximation:
* 1
Uy = Ug — f (—@d —u?) +2t(ug—u_y) —t2 —1dt =1+ 2x + x2 —§x3,
0

x 1 1 1 1 1
U, = uy —fo (— W2 —ud) + 2t(uy —up))dt = 1 + 2x + x2 +§x3 —§x4 —§x5 —§x6 +ax7,

1
x6 + ..

Ug =u2—fox(—(ug—u%)+2t(u2—u1))dt =1+2x+x2+x3+§x4—11—5x5—3

x 11 19
u4=u3—f (— (2 —u?) + 2t(u; — uy))dt = 1+2x+x2+x3+x‘*—Ex5+Ex6+-~
0
X
u5=u4—f (@ —ud) +2t(uy —uz))dt =1+2x+x2+x3 +x*+ x5+ x%+ -
0

Uy =x+A+x+x2+x3+x*+x°+x+x7 + ).
This will yield the exact solution: u(x) = x + 1Tlx . xl <1

3. Second Order ODEs:

(15)

We now consider the second order linear ODE with constant coefficients and extend our analysis to this

equation that given by
u"(x) +au'(x) + bu(x) = gx), u(0) =a ,u'(0)=p4

According to the VIM, the basic character of the method is to construct a correction functional for the
equation, which reads (Wazwaz, 2009).

Uns1(6) = Un () + [ A(0) (Un(8) + afin (£) + bty (1) — g(0))dt, n=0

Calculating variation with respect to u,, yields the following stationary conditions (Wazwaz, 2009).

1—, = = " = .
X, _ =0 ,A(t)|t=x 0, 7@ _ =0

The Lagrange multiplier, therefore, can be identified as: A(t) = t — x.
Substituting this value of the Lagrange multiplier into the functional (17) gives the iteration formula

U () = Un () + L6 = X)(un(®) + auy, (6) + buy (8) — g(O))dt , n2 0

It is observed that there are repeated calculations in each step. To stop these repeats, the following
modification on the recursive formula (19) is suggested

Ung1 (1) = 1, () + [ (& = D)un (O)dt + [ (¢ = x)(awy, (£) + buy (£) — g())dt.

Integrating the integral by parts gives
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Jo (t = 0up(D)dt = =1, (x) + 1, (0) + xu, (0). (21)
Substituting (21) into the (20) gives

Uni1 (X) = 1y (0) + x1, (0) + f (£ = x)(auy (£) + buy () — g())dt. (22)
We can set u,(0) + xu,(0) = a + fx = uy , so

Unir (X) = g + [ (£ = %) (auy () + buy(t) — g(8))dt. (23)

To eliminate all the unneeded terms and the repeated computation in VIM we rewrite Eq. (23) in the
following iteration formula

Unt1 (¥) =uo + fo X(t = 2)(a(n(t) = Un-1()) + D(Un(t) — Up-1 (£))dt

+ [, (t — 1) (@un_y () + buy_, () — g(£))d. (24)
But it is known from (23) that

U, (%) = up + [ (t = 1) (@Uny () + bun_, () — g(D))d. (25)
So the following MVIM is used

Uns1 () = Up + [ (8 = 2)(@(un () = Un_1 () + b(n(t) = Uun_1(0))dt, n >0 (26)

where ug =a +fx , u_; = 0and
uy (x) = up + f (t = x)(@(uo(t) — ule(£)) + b(uo(t) — u_y (1)) — g(t))dt.
0

Notice that the final modified formula (26) cancels all the repeated calculation and unsettled terms in VIM.
Now we apply the MVIM for solving two models of the second order ODEs, example 2 is a second order
Euler equation.

Examplel:
Solve the following second order inhomogeneous ODE.

u' —3u+2u=2x-3, u(0)=1, u'(0)=2. (27

For solving this equation by MVIM, follow the discussion presented above we canset u_; =0, uy =1+
2x. the iteration formula is given by

Uppr = Up + f;((t —x) (—S(u,'1 —Up_q) + 2y, — un_l)) dt,n >0 (28)
where 1, = ug + f) (t = 2)(—=3(up — uly) + 2(uo — u_4) — 2t + 3)dt.

Therefore we can obtain the following successive approximation:
up(x) =1+ 2x,

U =up+ fox(t —x)(=3(ug—u_q) +2(ug —u_y) — 2t +3)dt =1+ 2x + %xz - §x3,

u, =uy + [ (t—x) (—3(ui —ug) + 2(uy — uo)) dt =1+2x+ %xz +%x3 - %x“ +%x5,

Uz =u, + f (t—x) (—S(ué —uy) + 2(u, — ul)) dt,
0
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=142 +1 2+1 3+1 4 135+7 6L
= T T T Te0r T1s80F T630™

’ x2  x3  xh x5
Up (x) =X+(1+X+;+;+I+;+'“).

This will yield the exact solution: u(x) = lim,_, u,(x) = x + e* , as obtained by Wazwaz (2009) using
VIM.

Example 2:
We apply the MVIM to solve the following second order Euler equation

x?y"=2xy'+2y=0 ,y(1)=2 y1)=3, x>0 (29)

Because of the singularity at x=0, we use the following transformation

z=Inx = x=e¢e? (30)
So that

dy _ 1dy

dx xdz’ (31)

d’y _1d’y 1dy

dx?  x2dz?2  xdz’

Using (30) and (31) into (29) gives
By 3 0= 0y(z=0)=2, y(z=0)=3 (32)
dz? dz y "y - '

To solve Eq. (32) by the MVIM, follow the discussion presented above we canset y_; =0, y, =2 + 3z.
Then we use the iteration formula

Yn1(2) = yn(2) + [t — 2) (—3(3/{1 ~ Y1) + 200 — yn—l)) dt,n = 0. (33)

Therefore by the above iteration formula, we can obtain following approximations
. . 5
y1(2) = y0(2) + foz(t —z) (_3(370 —y-1) + 200 — 3’—1)) dt =243z + EZZ -z

2
=(1+Z+ZZ—I)+(1+22+2Z2)—Z3,

7 1

? . 5 3
¥2(2) = y1(2) +f0 (¢ =2) (301 = y0) + 201 —y0))dt = 2+3z2 4222 +22° — 2zt 4 1 °

- 2 7 2,8 3
= 1+Z+z+§ +(1+22+22 +§Z)+'“

Y3(2) = () + [t = 2) (=30 = y1) + 20y, — y)) ) dt
17 17 23 1

5 3
=2 3 2 — 3 L4 5 - 6 __— 7
+ Z+ZZ +ZZ +24z 202 +1SOZ 2102

B z2 z3 z* ,, 8 5. 16,
o] EETRE R +(1+2z+2z +57 +Ez)+---

74 =35 + [ (€= 2 (=305 = 33) + 205~ y2) e
0

411



Aust. J. Basic & Appl. Sci., 5(10): 406-416, 2011

5 3 17 11 17 2 2 1
=243z+4+-z22+-23+—zt + =25 —— 28+ =27 - —2f 4 —2°
2 2 24 40 36 21 315 7560

2 3 4 5
=(1+z+Z+Z+2+0)+ (14224222 + 223+ 220+ 255) 4
2! 3! 4! 5! 3! 4! 5!

The last approximation convergences to the exact solution: y(z) = lim,_,,, v,(x) =e? + e?Z.

Recall that z = Inx , then this will yield the exact solution: y(x) = x + x2, which are the same solution as
obtained by Wazwaz (2009) with VIM, but in this method as it is shown, reduces the size of calculation in
comparison with VIM.

4. Third Order ODEs:
In this section, we consider the third order linear ODE with constant coefficients and apply the MVIM for
solving this equation that given by

u'tau +bu'tcu=gkx), u@ = a, u@=p8, u'0)=y. (34)

According to the VIM, the basic character of the method is to construct a correction functional for the
equation, which reads (Wazwaz, 2009).

Uni1 (X) = U (%) + [7 A0 (un (8) + afly (£) + bty (£) + ¢l () — g(£))dt , n=0 (35)

We take the variation of both sides of (35) with respect to the independent variable u,, and notice that
S8ii,, = 8il,, = 6ii,, = 0, Then we find

Sty (%) = Su, (%) + 8( [, A(t)uy, (£)dt). (36)
By taking the integral of (36) by parts three times and by using the extremum condition of u,.; the

following stationary conditions yields: 1" =0 , 1+ 2" P 0, A(t) P 0.

The Lagrange multiplier, therefore, can be identified as: A(t) = _2—'1 (t —x)2.

Substituting this value of the Lagrange multiplier into the functional (35) and delete the restriction on
Uy, Uy, U, this leads to:

U1 (0) = U () = 2 (8 = 22 (i (©) + qup (6) + bup (8) + cuy (£) — g(O)at. (37)

In this method there are repeated calculation in each step, to cancel some of the repeated calculation, the
iteration formula (37) can be handled as follows.

U1 () = U () = = (¢ = )%y ()t — = [¥(t = x)? (@up (£) + by (8) + cuy (£) — g (£))dt (38)
Therefore
1 () = U (0) + 1 (0) = S5 (0) = 3 (6 = 02t (©) + bup (e + cu(6) — g(©) ). (39)

, 2, 2
We can set u,(0) + xu,(0) — x?un(O) =o+px+ yx? = U, SO

U () = o () = 2 (6 = )% (@up (6) + bup (6) + cun (6) — g())dt. (40)

Via the iteration formula (40) some repeated computation are cancelled.
To eliminate all repeated computation, let us rewrite Eq. (40) in the following iteration formula:

Upyr (X) = up(x) — %fox(t — x)? (a(u,';(t) - u,';_l(t)) + b(un () — w1 () + ¢y (£) — Uy, (D)dt
= 135 = 2092 (@ (8) + by (6) + () — g (1) ) dt. @1
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But it is known from (40) that
() = o () = 5[5 (¢ = 202 (@1 (©) + b1 (6) + 1 (6) = 9(0)) . “2)
Substituting by (42) in (41), we get

U (6) = U () = 5 [t = 002 (@( (U (®) = U1 () + b () = Uy (& + € (£) = Uy ()))dlE), (43)

2
where u_, =0, ug=a+ fx+ yx? and u, is obtained from

1 " " , )
u; (%) = up(x) — Ef (¢ = 2% (aug(t) — u=1(8)) + b(u(t) — u1 () + c(up(t) — u—_1 (1)) — g(B))dt.
70

This final modified formula (43) cancels all the repeated calculation and terms, which are not needed.
Now, we apply the MVIM for solving a third order ODE.

Examplel:
we consider the following third order inhomogeneous ODE

u'=2u"+u' =1 ,u(0)=0,u'(0) =2,u"(0) = 2. (44)

For solving this equation by MVIM, follow the discussion presented above we can set u_; = 0 and
Uy = 2x + x2 , then the following iteration formula obtain

Upt1 = Up — %J‘Ox(t —x)? (_Z(U;; - u‘;;—l) + (un - u1’1—1)) dt,n>0 (45)
where u; = ug — %fox(t —x)%(=2(ug —u’y) + (ug —u_;) — 1dt
Therefore, we can obtain the following successive approximation:
Uy = 2x + x2,
U = U —%f[f(t —x)? (=2(ug —u’1) + (ug —u_,) — 1dt = 2x + x? +§x3 —11—2x4,

1 rx " " ' ' 1 1 7 1
Uy =Uy _Efo (t — x)? (—Z(u1 —ugy) + (uy — uo)) dt = 2x +x? +2x° — 2x* — —-x% + —=x°,

1r* . . , ,
Ug = Uy — Ef (t — x)? (—Z(u2 —uy) + (u, — ul)) dt
0

1 1 1 1 11 1
=2x4+xt+-xd——xt x5 —=xb+—x7 - x8,
2 3! 4 40 5040 20160

up(x) = x+x(1 +x+%x2 +%x3 +%x4 + )

Consequently this will yield the exact solution: u(x) = x(1 + e*). In this method as it is shown, the source
inhomogeneous term is only used for the first iteration step () and this method reduces the size of calculation
in comparison with VIM (Wazwaz, 2009).

5. The Lane-Emden-Fowler Equation of Index M:

We close our study by using the MVIM to the Lane-Emden-Fowler equation of index m (X. Shang, 2009;
Wazwaz, 2002; 2005) that given by

Y@ +2y ) +af()y™=0 ,y(0)=1, y(0)=0 (46)
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For f(x) =1 anda = 1, Eq. (46) is reduced to the standard Lane-Emden equation. However, for f(x) =
x™, a =1 Eq.(46) gives the Emden-Fowler equation of index m. for physical interest, the polytrophic index m
lies between 0 and 5 (X. Shang, 2009) . Notice that this equation is only linear for m = 0 and m = 1. Otherwise
it is nonlinear.

5.1. The Lane-Emden Equation of Index M:
The Lane-Emden equation of index m is given by

Y@ 4y @+ym=0, y0=1, y@O=0 47

This equation was used to model the thermal behaviour of a spherical cloud of gas acting under the mutual
attraction of its molecules and subject to the classical lows of thermodynamics.

Because of the singularity at x=0, we use the following transformation
u(x)

u(x) =xy(x) =2ykx) = (48)
So that
@ =xy ty 2y )=t
B (49)
u'x)=xy +2y =2y'(x)= u(x) 2%+2%.
Using (48) and (49) into (47) gives
u +xmym =0 m=0,12,.. , u(0)=0, u'(0)=1 (50)

To solve this equation by The MVIM following the discussion presented before for second order equations
with constant coefficients the following iteration formula is obtained:

Ung1 (1) = 1, () + [ (& = 2) (7™ = wty))de,n = 0 (51)

where u_; = 0, u, = x. Therefore we can obtained the following successive approximation
Up (x) =X,

up (x) = up(x) + f(f(t —x) (t™ P - um))dt = x — %x3,

u,(x) = uy (x) + fx(t —x) (7l —u))dt = x — %x + 17;0 5
0

_ 8m-5
uz(x) = uy(x) + f:(t —-x) (t1 Mt — uf ))dt =x—-= + o x5 m(3(‘r;1!) ) 7,

x _ m(8m-5) m(70-183m+122m?)
Uy (%) = uz(x) + fo (t—x) (t1 Myt — uf ))dt =x—= + o x5 — ) 7 ) x°

Recall that y(x) = @ . This gives the series solution

_x* | m 4, m(8m-5) X6 m(70-183m+122m?) g
yx) =1 + o X o0 + 563 x8 + (52)

Exact Solutions exist only for three cases, namely:

Case (1): For m = 0, by substituting m = 0 in (52)the exact solution is given by
2
Yy =1-=,

Case (2): For m = 1, by substituting m = 1 in (52) the exact solution is given by

(x)—l——x + 5 x ——x + x T

X

Case (3): For m = 5, by substituting m = 5 in (52) the exact solution is given by
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-1
1ty tae 564 5 g8y a2
y() =1 6x T 756" +7776x+ _(1+3)’

Which are the same solutions as obtained by Shang (2009) and Wazwaz (2009). with VIM, but in this
method the size of calculation reduces. For other cases, only the series solution are obtainable.

5.2. The Emden-Fowler Equation of Index M:

Many problem in mathematical physics and astrophysics can be modelled by the Emden-Fowler equation of
index m (Shang, 2009; Wazwaz, 2002; 2005) that given by

Y@+ 2y () +ax"y™ =0, y(0) =1, y'(0) =0 (53)

It will be shown by using the MVIM that exact solutions exist only for m=0,1and5.
Because of the singularity at x=0, we use the transformation (48) and (49) into (53) that gives

u'taxtmym =0 (m=0,1,..),u(0) =0, u'(0)=1. (54)

For solving Eq. (54) by the MVIM, based on the discussion presented above for second order equations
with constant coefficients, the following iteration formula is obtained

U1 () = U () + [ (£ — %) (@t ™t — ) dt, (55)

whereu_; =0, uy, =x.
This in turn gives the successive approximations

Uy = X,
X
a
u (%) = uy(x) + t—x) (at™ "W —u™))dt = x — —rx——x3™",
_ Xry 1+n-m¢,,m _ ,,m e a n+3 a’m 2n+5
w () = wy () + [ (¢ x)(at @ —ug)) dt =x e T iammmnmin X
X
uz(x) = uy(x) + f (t— x)(at“"_m(ug‘ - u{”)) dt
0
- y— a n+3 o a’m £2n+5 adm(8m+3mn—2n-5) 3n+7 4 ...
(n+3)(n+2) 2(2n+5)(n+3)(n+2)2 6(3n+7)(2n+5)(n+3)2(n+2)3
Recall that y(x) = % . This gives the series solution
1 a n+2 a’m n+s a3m(8m+3mn-2n-5) 3n+6 4 ..
y() =1 (n+3)(n+2) 2(2n+5)(n+3)(n+2)2 6(3n+7)(2n+5)(n+3)2(n+2)3 + (56)

From the (56) we conclude that n # —3, -2, — g - g, —

Exact Solution Exist only for three cases, namely:

Case (1): For m=0, n=0, the exact solution is given by: y(x) = 1 — %xz,

sinvax
Vax ’

Case (2): For m=1, n=0, the exact solution is given by: y(x) =
=2
Case (3): For m=5, n=0, the exact solution is given by: y(x) = (1 + %) : ,
which are the same solutions as obtained by Shang (2009) and Wazwaz, (2009) but in this method the size
of calculation reduces.

Conclusion :

The modified variational iteration method is remarkably effective for solving various types of ODEs of
distinct orders. In this work, we employed the modified variational iteration method to investigate linear and
nonlinear ordinary differential equations. This method is a very promoting method, which will be certainly
found widely applications.

By analyzing the obtained results and procedures used in modified variational iteration method and
variational iteration method we observed that the modified variational iteration method facilitates the
computational work and minimizes it and this method cancels all the unsettled term in variational iteration
method, also this method is faster than variational iteration method and save time.
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