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Abstract: A new method namely, dripping method is proposed for finding a set of efficient solutions 
to a bi-objective transportation problem which differs from all existing methods. The percentage level 
of satisfaction of a solution for a transportation problem is introduced. An illustrative example is 
presented to clarify the idea of the proposed approach. The dripping method can be served as an 
important tool for the decision makers to obtain efficient solutions, according to their level of 
satisfaction on the objective functions when they are handling various types of logistic problems 
involving two objectives.  
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INTRODUCTION 
 

Transportation problem (TP) nourishes economic and social activity and is cardinal to operations research 
and management science. In the classical TP of linear programming, the traditional objective is one of 
minimizing the total cost. In general, the real life problems are modeled with multi-objectives which are 
measured in different scales and at the same time in conflict. In actual TP’s, the multi-objective functions are 
generally considered, which includes average delivery time of the commodities, reliability of transportation, 
product deterioration and so on. The bi-criteria TP is the basis in processing multi-objective TP, which had been 
proposed by Aneja and Nair, (1979). Isermann, (1979) introduced an algorithm for solving linear multiple-
objective TP, which provides effective solutions. Ringuest and Rinks, (1987) have made a mention of the 
existing solution procedures for the multiobjective TP. Bit et al., (1992) have  shown  the application of  fuzzy  
programming  to  multicriteria  decision  making classical TP. Yang and Gen, (1994) have proposed an 
approach called evolution program for bi-criteria TP. Gen et al., (1998) introduced a hybrid genetic algorithm  
for solving bi-criteria TP. Waiel F. Abd El-Wahed, (2001) developed a fuzzy programming approach to 
determine the optimal compromise solution of a multi-objective TP. Bodkhe et al., (2010) used the fuzzy 
programming technique with hyperbolic membership function to solve a bi-objective TP as vector minimum 
problem. Pandian and Natarajan, (2010) have introduced the zero point method for finding an optimal solution 
to a classical TP without using any optimality checking methods. 

In this paper, we propose a new method namely, dripping method for finding the set of efficient solutions to 
bi-objective transportation problem. In the proposed method, we can identify next solution to the problem from 
the current solution which differs from utility function method, goal programming approach, fuzzy 
programming technique, genetic approach  and evolutionary approach. The percentage level of satisfaction of  a 
solution of  the  bi-objective problem is introduced. The dripping method is illustrated with help of a numerical 
example. This new approach enables the decision makers to evaluate the economical activities and make self 
satisfied managerial decisions when they are handling a variety of logistic problems involving two objectives. 
 
2 Bi-objective Transportation Problem: 

Consider the following bi-objective transportation problem (BTP): 
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0ijx ,      for all i and j and are integers                                   (2.3) 

where ia  is the amount of the material available at ith source; jb  is the amount of the material required at 

jth destination; ijc  is the cost of transporting a unit from ith source to jth destination; ijd is the deterioration of 

a unit while transporting from ith source to jth destination; ijx  is the amount transported from ith source to jth 

destination. 
 
Definition 2.1: 

A set },...2,1;,...,2,1,{ njmiijxX    is said to be feasible to the problem (P)  if X  satisfies  the 

conditions (2.1) to (2.3). 
 

Definition 2.2: 

A feasible solution X  is said to be an efficient solution to the problem (P) if there exists no other feasible 

X  of BTP  such that  )()( 11
XZXZ   and  )()( 22

XZXZ   or  )()( 22
XZXZ   and )()( 11

XZXZ  . 

Otherwise, it is called non-efficient solution to the problem (P). 

  For simplicity, a pair ))(),(( 21
 XZXZ  is called  an efficient / a non-efficient solution to  the 

problem (P)  if X is efficient / non-efficient solution to the problem (P). 
We introduce the following new concept namely, percentage satisfaction level  of  the objective at a 

solution to a transportation problem for identifying the level of a solution from its  optimal solution.  
 

Definition 2.3: 
The percentage satisfaction level of the objective at a solution,  U to a transportation problem  is defined as 

follows.  

Percentage Satisfaction Level of the objective at U = 100
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where )(UO   is  the objective value at the solution U and O0  is  the optimal objective value of the 

transportation problem. 
 Now, we need the following theorem which is used in the proposed method . 
 

Theorem 2.1: 

 Let },...,2,1 ;,...,2,1,{ njmiijxX    be an optimal solution to (P1) where 

              (P1)   Minimize  ijij
nm

xcZ 
 1j1i

1    

                        subject to (2.1), (2.2) and (2.3) .                                                                

and  },...2,1;,...,2,1,{ njmiyY ij     be an optimal solution to (P2) where  

              (P2)   Minimize  ijij
nm

xdZ 
 1j1i

2    

                       subject to (2.1), (2.2) and (2.3) . 

Then,   },...2,1;,...,2,1,{ njmiijuU   which is obtained from },...,2,1; ,...,2,1,{ njmiijxX    or 

},...2,1;,...,2,1,{ njmiyY ij   ,  is an efficient / non efficient solution to the problem (P).    

 
Proof: 

Now, since },...2,1;,...,2,1,{ njmixX ij    is an optimal solution of (P1),  

},...2,1;,...,2,1,{ njmixX ij    is a feasible solution of (P2). 
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Clearly, },...2,1;,...,2,1,{ njmiijxX    is an efficient solution to the problem (P) which is trivial. Let us 

choose the allocated cell ),( rt with maximum ijd  in (P2).  

Now, we float a quantity from the allocated cell ),( rt cell to the lowest cost cell through a closed loop so 

that total deterioration cost  is minimum.  
Construct a rectangular loop ABCDA where AC are in the rth column and BD are in the sth column such 

that A is the ),( rt  allocated cell, D is the ),( sp allocated cell, C is the ),( rp cell, and B is the ),( st  

unallocated cell with minimum deterioration cost. 

Let  = Min{ }, 
pstr xx . 

We flow the quantity   where  1  through the closed loop ABCDA. First, allocate   unit  to the  

unallocated  cell ),( st  and  subtract   unit  to  the allocated cells ),( rt  and ),( sp  and also add   unit to 

the cell ),( rp . Then, we obtain a new allotment for A, B, C and D are 
trv , 

tsv , 
prv  and  

psv . Thus, we have 

the following feasible solution },...2,1;,...,2,1,{ njmiuU ij    to (P1) and (P2) where             
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which is better than },...2,1;,...,2,1,{ njmixX ij    for the problem (P2). Thus 

},...2,1;,...,2,1,{ njmiuU ij    is an efficient / a non-efficient  solution to the problem (P). 

Similarly, we can also obtain an efficient solution to the problem (P) from the optimal solution 

},...,2,1  ; ,...,2,1,{ mjniyY ij    of   (P2) by repeating the same procedure.  

Hence the theorem. 
 

Remark 2.1: 
For each  ,  1 ,  we obtain a solution to the problem (P) which is an efficient / a non-efficient 

solution to the problem (P). Thus, we can obtain atmost   different solutions to the problem (P) using the above 
procedure. 

 
Remark 2.2: 

The above solution procedure will terminate if the improved solution of (P1) obtained from an optimal 
solution of (P2) is an optimal one or the improved solution of (P2) obtained from an optimal solution of (P1) is an 
optimal one. 

 
Remark 2.3: 

If  the loop cannot be formed for the highest cost, then we move to the next  highest cost so as to construct a 
loop. If such a loop is not possible, the procedure can not be applied to the problem. This indicates that the 
current solution is an optimal solution to the problem.  

 
3 Dripping Method: 

We now propose  a new method namely, dripping method for finding all the solutions to the bi-objective 
transportation problem (P). 

The  dripping method proceeds as follows: 
 

Step 1: 
Construct two individual problems of the given BTP namely, first objective transportation problem (FOTP)  

and  second  objective transportation problem (SOTP). 
 

Step 2: 
Obtain an optimal solutions to the problems FOTP and SOTP  by the zero point method. 

Step 3: 
Start with an optimal solution of  FOTP in the SOTP as a feasible solution which is  an efficient solution to 

BTP.  
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Step 4: 
Select the allocated cell ),( rt  with the maximum penalty in the SOTP. Then, construct  a rectangular loop 

that  starts and ends at the allocated cell ),( rt  and connect some of the unallocated and allocated cells.  

 
Step 5: 

Add and subtract   to and from the transition cells of the loop in such a way that the rim requirements 

remain satisfied and assign a sequence of values to   one by one in such a way that the allocated cell remains 

non-negative. Then, obtain a feasible solution to SOTP for each value of   which is also an efficient / a non-
efficient  solution to BTP by the Theorem 2.1 . 

 
Step 6: 

Check whether the feasible solution to SOTP obtained from the step 5. is the optimum solution. If  not, 
repeat  the Steps 4 and 5 until an optimum  solution  to SOTP is found. If so, the process can be stopped and 
movement to the next step can be made.   

 
Step 7: 

Start with an optimal solution of  the SOTP in the FOTP as a feasible solution which is an efficient/ non-
efficient  solution to BTP.  

 
Step 8: 

Repeat the steps 4, 5 and 6 for the FOTP.  
 

Step 9: 
Combine all solutions (efficient / non efficient) of BTP obtained using the optimal solutions of FOTP and 

SOTP. From this, a set of efficient solutions and a set of non-efficient solutions to the BTP can be obtained. 
 

4  Numerical Example:     
The proposed method namely,  dripping method  for solving a BTP is illustrated by the following example. 
 

Example: 
Consider a transportation model of a company involving three factories, denoted by F1, F2  and  F3, and four 

warehouses, denoted by W1, W2, W3 and W4. A particular product is transported from the ith factory to the jth 
warehouse. Assume there are two objectives under consideration: (i) the minimization of total transportation 
cost consumed in transportation, and (ii) the minimization of total product deterioration during transportation. 
The cost of the transportation of a product and the deterioration cost of a product during transportation are given 
in the following table. 

          
The goal is to locate the set of all solutions for the bi-objective transportation problem. 
 
Now, the FOTP of BTP is given below: 

 
Now, using the zero point method,  the optimal solution to the FOTP is 511 x , 312 x , 621 x , 1324 x , 

1433 x , 334 x  and also, the minimum transportation cost  is  143. 

Now, the SOTP of BTP is given below: 
 
 

 Warehouses j 
W1                         W2                          W3                        W4 

Supply 

             F1 (1,4) (2,4) (7,3) (7,4) 8 
Factory i,            F2 (1,5) (9,8) (3,9) (4,10) 19 

             F3 (8,6) (9,2) (4,5) (6,1) 17 
Demand 11 3 14 16  

 Warehouses j 
    W1                       W2                           W3                             W4 

Supply 

                 F1 1 2 7 7 8 
Factory i,              F2 1 9 3 4 19 

                 F3 8 9 4 6 17 
Demand 11 3 14 16  
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Now, using the zero point method, the optimal solution to the SOTP  is 813 x , 1121 x , 222 x ,  

623 x , 132 x , 1634 x   and  also, the minimum deterioration cost is 167. 

Now, as in Step 3, we  consider the optimal solution of the FOTP in the SOTP as a feasible solution in the 
following table. 

 

Thus, (143,265) is the bi-objective value of BTP for the feasible solution 511 x , 

312 x , 621 x , 1324 x , 1433 x  and 334 x . 

According to Step 4, we construct a rectangular loop )4,2()4,3()3,3()3,2()4,2(  . By using the Step 5, 

we have the following reduced table. 

 
Now, for any value }13,....,2,1{ , the deterioration cost of  SOTP is 5265  and the transportation cost 

of  FOTP is 143 . Thus, )5265 ,143(    is the bi-objective value of BTP for the feasible solution 

511 x , 312 x , 621 x , 23x , 1324x , 1433x  and   334x . For the maximum value of 

 , that is   =13, the deterioration cost of  SOTP is 200 and FOTP is 156. Thus, (156, 200) is the bi-objective 
value of BTP for the feasible solution 511 x , 312 x , 621 x , 1323 x , 133 x  and 1634 x . 

Now, the current solution to SOTP is not an optimum solution. While repeating Step 4 and Step 5, we have 
the following feasible solution which is better than the prior feasible solution of SOTP. 

 

 
Now, for any value }5,...,1{ , the deterioration cost of SOTP is 5200  and FOTP is 4156  . 

Thus, )5200 ,4156(   is the bi-objective value of BTP  for the feasible solution   511x , 

312 x , 13x ,  621x , 1323x , 133 x  and 1634 x . For the maximum value of  , that is 

  =5, the deterioration cost of  SOTP is 175 and FOTP is 176. Thus, (176, 175) is the bi-objective value of 

BTP  for the feasible solution 312 x , 513 x , 1121 x , 823 x , 133 x  and 1634 x . 

Now, the current solution to SOTP is not the optimum solution. Repetition of Step 4 and 5 results in the 
following feasible solution which is better than the prior feasible solution of SOTP. 

 
 

 Warehouses j 
 W1                           W2                       W3                                W4 

Supply 

                 F1 4 4 3 4 8 
Factory i,               F2 5 8 9 10 19 

                 F3 6 2 5 1 17 
Demand 11 3 14 16  

 Warehouses j 
 W1                          W2                         W3                            W4 

Supply 

                  F1 4 (5) 4  (3)        3  4 8 
Factory i,            F2 5 (6)       8        9        10 (13)   19 

                   F3 6 2 5 (14)        1  (3)       17 
Demand 11 3  14  16  

 Warehouses j 
W1                             W2                       W3                                     W4 

 Supply 

           F1          4  (5)       4 (3)        3 4 8 
Factory i,            F2 5  (6)      8        9 ( )         10  (13- )         19 

            F3 6            2         5 (14- )       1 (3+ )        17 

Demand 11 3 14 16  

 Warehouses j 
 W1             W2              W3                     W4 

Supply 

F1                4    (5- ) 4       (3)     3        ( )     4   8 

Factory i, F2 5   (6+ )      8      9  (13 - )        10        19 

  F3               6      2       5         (1)         1        (16)       17 
Demand 11 3 14 16  
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Now, for any value }3,2,1{ , the deterioration cost of SOTP is 2175 and FOTP is 11175 . Thus, 

)2175 ,11176(   is the bi-objective value of BTP  for the feasible solution  312x ,  513x , 

1121 x , 22x ,  823x , 133 x  and 1634 x . For the maximum value of  , that is   =3, the 

deterioration cost of SOTP is 169 and FOTP is 209. Thus, (209, 169) is the bi-objective value of BTP  for the 

feasible solution 813 x , 1121 x , 322 x , 523 x , 133 x  and 1634 x . 

Now, the current solution to SOTP is not the optimum solution of SOTP. Repeating Step 4 and Step 5, we 
have the following feasible solution which is better than the current feasible solution of SOTP. 

 

 
Now,  since the maximum value of   =1, the deterioration cost of  SOTP is 167 and FOTP is 208.  Thus, 

(208, 167) is the bi-objective value of BTP  for the feasible solution 813 x , 1121 x , 222 x , 623 x , 

133 x  and 1634 x .  

Now, since 167 is the optimal value for the SOTP, we stop the computations. 

Therefore, the set of  all solutions 1S  of  the BTP obtained from FOTP to SOTP  is   

{(143,265), (144,260), (145,255), (146,250), (147,245), (148,240), (149,235), (150,230),     
 (151,225), (152,220), (153,215), (154,210),  (155,205), (156,200), (160,195), (164,190),  
 (168,185), (172,180), (176,175), (187,173), (198,171), (209,169) and (167,208) }. 
 
Similarly, by using Steps 7 and 8, we obtain the set of all solutions 2S from SOTP to FOTP is given below:  

 

Therefore, the set of  all solutions 2S  of  the BTP obtained from SOTP to  FOTP  is 

{(208,167), (197,169), (186,171), (176,175), (172,180), (168,185), (164,190), (160,195),    
(156,200), (155,205), (154,210), (153,215), (152,220), (151,225), (150,230), (149,235),   
(148,240), (147,245), (146,250), (145,255), (144,260), (143,265)}. 
 
Now the set of all solutions S of the BTP obtained from FOTP to SOTP and from SOTP to FOTP  is given 

below: 

 Warehouses j 
 W1                     W2                          W3                          W4 

Supply 

                F1  4      4 (3- )       3  (5+ )           4      8 

Factory i,        F2 5 (11) 8  ( )        9  (8 - )          10   19 

                F3          6        2        5 (1)           1 (16)     17 
Demand 11 3 14 16  

 Warehouses j 
 W1                     W2                           W3                            W4 

Supply 

 F1  4 4        3 (8)          4        8 
Factory i,        F2 5 (11)      8 (3- )       9 (5+ )           10 19 

F3                 6 2 ( )        5 (1- )          1 (16)          17 

Demand 11 3 14 16  

Iteration    Solution of BTP Bi-objective value  

1 }2,1{  12x ,  813x , 1121 x ,  222x , 

 623x , 132 x ,  1634 x . 

)2167 ,11208(      

 

2 }1{   212x ,  613x , 1121 x , 823 x ,  

132x , 33x , 1634 x . 

(176, 175) 

3 }5,...,1{  

 

11x , 312 x ,  513x , 

1121x ,  823x , 133 x , 1634 x . 

)5175 ,4176(     

4 }13,...,1{  

 

511 x , 312 x , 621 x , 1323x , 

24x , 133x ,  1634x  

)5200 ,156(    
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       S  =  1S   2S  

           = {(143,265), (144,260), (145,255), (146,250), (147,245), (148,240), (149,235),                                      
                (150,230), (151,225), (152,220), (153,215), (154,210), (155,205), (156,200),                   
                (160,195), (164,190), (168,185), (172,180), (176,175), (186,171), (187,173),     
                (197,169), (198,171), (209,169), (208,167) }. 
 

Graphical Representation Of  Bi-Objective Values Of BTP 
From the Figure 1, we see that the proposed approach can find the set of efficient solutions not only those 

produced by Aneja, Bit et al. , Cohen et al. , Yang,  but also new efficient / non efficient solutions. In Bit et al. 
(1992), it is claimed that the point (160,195) is nearer to the ideal solution point (143,167) than the point 
(156,200) obtained by Aneja’s algorithm. In Yang (1994) applying the evoloution program to this example, the 
solution which is nearer to the ideal solution is the point (168,185). It is much closer than the point (160,195). 
Hence, (168,185) is the optimal compromise solution. Using the above proposed method, we also obtain the best 
optimal compromise solution to this example as (168,185) which is as same as in Yang.  

 
Fig. 1: The solutions obtained by the dripping method. 

 
The following table shows the satisfaction level of  objectives of  the problem at each efficient solution. 
 

 
Sl. No. 

 
Bi-objective value of  BTP  

Satisfaction level 
Objective of FOTP Objective of SOTP 

1 (143,265) 100 41.3 
2 (144,260) 99.30 44.31 
3 (145,255) 98.60 47.31 
4 (146,250) 97.90 50.30 
5 (147,245) 97.20 53.29 
6 (148,240) 96.50 56.29 
7 (149,235) 95.80 59.28 
8 (150,230) 95.10 62.28 
9 (151,225) 94.41 65.27 
10 (152,220) 93.71 68.26 
11 (153,215) 93.01 71.26 
12 (154,210) 92.31 74.25 
13 (155,205) 91.61 77.25 
14 (156,200) 90.91 80.24 
15 (160,195) 88.11 83.23 
16 (164,190) 85.31 86.23 
17 (168,185) 82.52 89.22 
18 (172,180) 79.72 92.22 
19 (176,175) 76.92 95.21 
20 (186,171) 69.93 97.60 
21 (197,169) 62.24 98.80 
22 (208,167) 54.55 100 

 
The above satisfaction level table is very much useful for the decision makers to select the appropriate 

efficient solutions to bi-objective transportation problems  according to their level of  satisfaction of  objectives. 
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Conclusion: 
In this paper, the proposed method provides the set of efficient solutions for bi-objective transportation 

problems. Here the two objectives are inherently taken care of at each iteration and the pairs recorded at any 
step identify the next efficient pair, thus providing a direction of movement without making use of any utility 
function, goal programming approach and any fuzzy programming technique. This method enables the decision 
makers to select an appropriate solution, depending on their financial position and also, their level of satisfaction 
of  objectives.  
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