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Abstract: Steel shear wall is an efficient lateral force resisting system with a thin steel plate connected 
to adjacent beams and columns which is expected to buckle in shear and form an inclined tension field 
similar to slender web plate girders. Sometimes the plate blocks a necessary building functionality and 
an opening is needed inside the plate. Examples of such cases are windows or doors in a steel shear 
wall core or openings for passage of ducts. The AISC seismic provisions states that an opening should 
be strengthened at edges by steel stiffeners to neutralize disruption of tension field continuity and 
minimize stress concentrations and edge buckling. It also allows other forms of openings that can be 
justified by testing or analysis. This paper introduces a method to prevent behavior decline using FRP 
laminates as edge reinforcement for the plate. An extensive numerical program was conducted to study 
the effect of FRP strips on the load carrying behavior of the system. A number of FRP materials 
together with different strip geometries are incorporated in the model to investigate possible behavioral 
improvements. The FRP layer is shown to prevent stress concentration at the perforation corners, 
provide support and continuity for inclined tension filed and enhance stiffness and strength of the shear 
wall system. The system is deemed to be promising considering the difficulties of traditional steel 
stiffeners which typically require welding and thus the proposed system can be equally efficient 
regarding economical and constructional considerations.  
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INTRODUCTION 

 
1.1. Perforated Steel Plate Shear Walls : 
 Steel plate shear wall (SPSW) is a lateral resistant system in which a thin steel plate is attached at top and 
bottom edges to two consecutive beams and at side edges to two columns in a span. The plate undergoes shear 
buckling and then a post-buckling phenomenon similar to that of inclined tension field in a plate girder occurs 
which is dependent on stiff and strong boundary frame elements. In some situations it may be necessary to cut 
the plate to place windows, doors or other openings which may undermine post-buckling behavior by 
weakening interior boundaries of the plate adjacent to the opening. The area around the perforation does not 
have a support at one side and therefore it is not able to develop inclined tension field and ultimately yield in 
tension. 
 The current practice for such perforated shear walls is to attach local boundary elements (or stiffeners) such 
as steel channels, angles or I sections to the four sides of the perforation so as to provide support for the inclined 
tension field and transfer plate edge loads at sides of perforation to the plate and perimeter boundary elements 
(AISC, 2005; AISC, 2007). Such an approach is depicted in figure 1.  

 

 
 

Fig. 1: Inclined tension field in SPSW infill (left), Principal stresses in plate (center) and forces acting on 
perforation boundary elements (right) 

 
 The AISC seismic provisions for steel buildings (AISC, 2005) states that “Openings in webs shall be 
bounded on all sides by HBE and VBE extending the full width and height of the panel respectively, unless 
otherwise justified by testing and analysis”. Furthermore, AISC design guide 20 provides a discussion on design 
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of perforated steel shear walls where steel boundary elements are analyzed and designed for inclined yielding 
stresses of the adjacent plate (AISC, 2007).  

 
1.2. FRP Stabilization and Strengthening of Thin-Walled Steel Sections: 
 Strengthening thin-walled steel structures has attracted increasing attention and different issues have been 
studied in the past decade (Zhao and Zhang, 2007). Extensive research has been focused on such areas as 
tension flange strengthening of beams (Tavakkolizadeh and Saadatmanesh, 2003; Photiou, et al., 2006), 
jacketing steel tubes and cylinders (Teng and Hu, 2007; Bambach, et al., 2009), FRP-steel adhesive bond 
behavior (Xia and Teng, 2005; El Damatty and Abushagur, 2003) and buckling control in slender box columns 
(Shaat and Fam, 2006). A part of past research has addressed buckling mitigation and plastic hinge stabilization 
by restraining free edge deformations.  
 Accord and Earls investigated the effect of 6.4mm thick GFRP strips attached to compression flange edges 
of a cantilever steel beam (Accord and Earls, 2006). They did not include FRP fracture or debonding in analysis 
and concluded that the FRP strip enhanced section ductility by restraining free edge deformations and buckling 
control by imposing a nodal line on the plate elements. 

(Harries, et al., 2009) conducted an experimental study wherein steel sections were partially stabilized using 
narrow FRP strips (Harries, et al., 2009). They stated that the high stiffness and linear behavior of FRP materials 
are utilized to provide ‘‘bracing’’ against web or flange local buckling. Cyclic concentric compression tests of 
long and stub WT sections (perhaps as in steel bracings) were carried out to study probable effects of FRP on 
elastic and plastic buckling of the section. They reported insignificant effect of FRP on ultimate axial capacity 
but observed an effective delay in buckling and a decrease in lateral deformations associated with buckling. 

 
1.3. FRP-Composited Steel Plate Shear Walls: 
 Although steel plate shear walls are proved to have acceptable behavior, a number of issues emerge. Plate 
instabilities restrain energy dissipation of the system which is demonstrated as pinching of the hysteresis curves. 
A thick or stiffened plate will yield in shear which is a more ductile behavior and increases energy dissipation. 
On the other hand, buckling-induced out-of-plane deformations of the plate may cause nonstructural damage. 
The inclined tension field also exerts strong inward forces on beams and columns compared with a plate which 
yields in shear before buckling happens. To address these issues Astaneh-Asl proposed a composite system 
wherein reinforced concrete layers were connected to the thin plate using studs. The RC layer would act as 
lateral support and facilitate shear yielding by mitigating buckling (Astaneh-Asl, 2002). 
 In a series of cyclic tests on SPSWs, Hatami and Rahai tested three one-storey SPSW models with 3 mm 
thick steel plate and 2IPE200 beams and columns. In one of the models, the steel infill plate was composited by 
attaching a 0.176mm thick CFRP layer using epoxy resin. Comparing the acquired data, the researchers 
observed less damage in the retrofitted specimen along with rupture of some bolts connecting the plate to the 
boundary members. They also found the FRP layer responsible for 37% increase in energy dissipation and 50% 
in lateral stiffness. It was stated however that FRP bonding had decreased ductility of wall by 8% (Hatami and 
Rahai, 2008). 
 Alipour carried out a numerical investigation on buckling and post-buckling behavior of FRP-composited 
steel shear walls after a vast literature survey on FRP-steel rehabilitation systems and bond behavior. A steel 
infill plate under pure shear was studied for buckling using elastic eigen-value analysis and its post-buckling 
phase was simulated using plasticity for steel and progressive damage for FRP materials. Both the buckling and 
post-buckling analyses demonstrated the ability of FRP layer to act as elastic support for the thin steel plate and 
hence a significant increase in buckling capacity, control of plastic flow in steel, decrease in out of plane 
deformations and increase in lateral stiffness and strength of the SPSW system (Alipour, 2010). 
 Rahai and Alipour investigated the fiber direction and geometry for FRP-composited steel shear walls using 
the finite element method. It was found that the optimum direction for fibers is the direction of tension field in 
the plate as can be calculated using an energy-based formula (Rahai and Alipour, 2011). 
 The idea of using FRP as edge reinforcement for perorated SPSWs was first proposed by Alipour and 
Raeeszadeh (Alipour and Raeeszadeh, 2011). Horizontal and vertical FRP strips used as edge stiffeners proved 
the proposed method as a valuable alternative to steel stiffeners. 

 
1.4. Concept and Research Significance: 
 The concept of FRP stabilization of steel members has considerable background in literature. In this study, 
FRP strips have been attached to perforation edges to stabilize and stiffen plate edges and to provide support for 
establishment of tension field around the opening. This paper studies effectiveness of FRP strips as perforation 
boundary elements and the effect of FRP strip thickness, width and material type on wall behavior. 

To authors’ knowledge, this paper presents the first research on FRP-stiffened perforated SPSWs. However, 
the idea is thought to be especially interesting to researchers considering the following advantages. First, FRP 
bonding is much easier and faster than steel stiffener welding specially with regard to difficulties of welding 
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Table1: Mechanical properties of the selected FRP materials 
Gm,c Gm,t Gf,c Gf,t S YC YT XC XT V12 G12 E22 E11 Mater

ial 
 N/mm N/mm N/mm N/mm MPa MPa MPa MPa MPa - (GPa) (GPa) (GPa) 

0.46 0.23 78.27 89.83 58.7 268.2 66.5 1379 1730 0.3 6.1 11.4 146.8 
CFR
P 

0.46 0.23 100 100 58.7 268.2 66.5 1232 1540 0.3 6.1 11.4 450 
HM-
CFR
P 

0.46 0.23 100 100 58.7 268.2 66.5 2560 3200 0.3 6.1 11.4 210 
HS-
CFR
P 

0.46 0.23 12.5 12.5 58.7 268.2 66.5 684 855 0.3 6.1 11.4 20.3 
GFR
P 

 
2.3. Validation: 
2.3.1. Steel Plate Shear Wall Behavior : 
 To verify modeling of a SPSW and nonlinearity and post-buckling phenomenon in its behavior, two 
examples of famous laboratory tests were selected and simulated using the ABAQUS finite element package. 
The first example is the four-storey shear wall tested in the University of Alberta (Driver, et al., 1997). S4R 
shell elements with material and geometric nonlinearity were used and an imperfection following the first 
buckling mode of the system was applied to the model with maximum deflection of 20 mm to simulate the real 
imperfect conditions. Shear force of the first storey was monitored and plotted against first storey in-plane 
displacement and comparison of the FE pushover curve with the laboratory hysteresis curves is shown in 
figure3. 

 

 
 

 
Fig. 3: Verification of Alberta model. 
 
 The second example is the one-story perforated shear wall recently tested in Taiwan by the researchers of 
the University of Buffalo (Vian, et al., 2009). Perfect agreement between the FE results gained in this 
verification and both the FE and experimental results reported by (Vian, et al., 2009) is demonstrated in figure 
4. 

 
 

  
 

Fig. 4: Verification of Vian, et al. model (Vian, et al., 2009). 
 
The good agreement achieved in both examples may demonstrate the ability of the adopted procedures to 

simulate key features of a SPSW behavior. 
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2.3.2. FRP-Steel Composite Action and Inclusion of Damage and Plasticity: 
Interaction of metal plasticity and FRP fracture and damage behaviors is an important part of the current 

study. To investigate the ability of the finite element procedures used in this study in predicting such 
phenomena, a fiber metal laminate (FML) specimen found in the literature was modeled and analyzed. The 
FLM consisted of three thin aluminum layers bonded with two GFRP layers under tension with a central hole as 
depicted in figure 5. This problem was modeled using solid elements for the aluminum and GFRP layers and 
cohesive elements for the adhesive films by Lapczyk and Hurtado and they compared their analytical results 
with experimental FML strength and observed considerable agreement (Lapczyk and Hurtado, 2007). However, 
in the current study S4R shell elements were used and perfect bond was assumed between layers. Comparison of 
the force-displacement curve obtained by Lapczyk and Hurtado and that of this study in figure 6 shows very 
good agreement.  

 

 

 
Fig. 5: Validation of composite behavior (Lapczyk and Hurtado, 2007). 
 
In this study, a strong adhesive system with additional measures to mitigate debonding is assumed so as to 
validate perfect adhesion assumption for the purpose of current study. To authors’ knowledge, the same attitude 
is selected in most of past studies aimed at FRP-stabilization of steel researches.   
 
2.3.3. Mesh Sensitivity Analysis: 

In order to investigate the effect of discretization on the numerical results, the shear walls model introduced 
in figure 2 was pushed and analyzed without a perforation and the analyses were repeated for different mesh 
sizes. The difference of base shear and initial stiffness of the wall with those of the smallest mesh for each mesh 
size are plotted against the number of elements in figure 6. Both of the error curves show convergence and a 
mesh size of 75 mm was adopted for the model corresponding to 2.3% and 0.6% error for base shear and 
stiffness respectively. 

 
Fig. 6: FE mesh convergence analysis. 

 
 As a second mesh sensitivity analysis, the steel infill plate of the model in figure 2 with dimensions of 
2500*2500*3mm was analyzed using elastic eigen-value procedure and the critical shear buckling stresses were 
extracted for different mesh sizes and the difference between FEM critical shear buckling stress results for 
different mesh sizes with that of exact analytical stress as given by equation 1 is plotted against number of 
elements (Figure 7). Based on figure 7, mesh size of 75mm which was used for the analyses in this section 
yields satisfactory results with less than 1% error from the exact answer.  
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 Inclined FRP strips oriented at 45º at opening corners may be another pattern for stiffening but may be 
subject to fiber rupture and sudden loss of strength as a result of maximum tensile forces at opening 
corners. 
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