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Abstract: In this paper, the Exp-Function method is used to construct solitary wave solution for some
nonlinear equations. The Khokhlov-Zabolotskaya, Newell-Whitehead and Buckmaster Equations are
chosen to illustrate the effectiveness of this method. The method is straightforward and concise, and its
applications are promising. It is shown that the Exp-function method, with the help of symbolic
computation, provides a very effective and powerful new method for discrete nonlinear evolution
equations in mathematical physics. In this paper, the results show that the Exp-Function method is a
powerful mathematical tool for solving systems of nonlinear partial differential equations having wide
applications in engineering.
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INTRODUCTION

Most scientific problems and phenomena in different fields of sciences and engineering occur nonlinearly.
Except in a limited number of these problems are linear. This method has been effectively and accurately shown
to solve a large class of nonlinear problems. In past several decades, many effective methods for obtaining the
solutions of nonlinear evolution equations have been proposed; for example variational method (Ji-Huan He,
2006; Laila, 2008; Ji-Huan He and Xu-Hong, 2007), Iteration perturbation method (He, 2001; Liao, 2005; He,
2005; He, 2006) and Homotopy perturbation method (Ramos, 2008; He, 2008; Gangi et al., 2008; Ganji, 2006;
Ganji and Rafie, 2006; Rafei et al., 2007; Ben-gong et al., 2008; Hosein et al., 2008) other methods (Ganji et
al., 2008; Ranjbar and Hosein Nia, 2008).

All mentioned above methods have limitations in their applications. In this paper we suggest a novel
method called Exp-Function method (Ben-gong ef al., 2008; Sheng Zhang, 2008; Soliman, 2008; Ya-zhou et al.,
2008; Turgut Ozis, 2008; Sheng Zhang, 2008; Ganji et al., 2008; Chaoqing Dai et al., 2008; Sheng Zhang,
2008; Sheng Zhang, 2008; Khan et al., 2008; Ji-Huan and Li-Na Zhang, 2008; El-Wakil et al., 2008;
Zhang Mei, 2007; Sheng Zhang, 2007 Abdou, 2007; Ji-Huan and Abdou, 2007; JXu-Hong and Ji-Huan, 2008;
Ji-Huan and Xu-Wong, 2006) to search for solitary of various nonlinear wave equation. The solution procedure
of this method, by the help of maple, is of utter simplicity and this method can be easily extended to all kinds of
nonlinear equations. In this paper, an application of Exp-Function method applied to solve the Khokhlov-
Zabolotskaya, Newell-Whitehead and Buckmaster Equations. This method leads to both generalized solitonary
solutions.

Basic Idea of Exp-Function Method (JXu-Hong and Ji-Huan, 2008; Ji-Huan and Xu-Wong, 2006):
We first consider nonlinear equation in form:

N@u,u,,u_u_,u,,..)=0, )
Introduction a complete variation defines as:

n=k+ot, u=u(n), (2)
And therefore, the Eq. (1) construct of ODE in form:

N@,u',u" u",..)=0. 3)

And then solution of #(77) is in form:
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Where ¢,d, p and q are positive integers which are unknown to be further determined,@, and b, are

unknown constants.

Application to Nonlinear Equations:
Khokhlov-Zabolotskaya Equation:
We consider the Khokhlov-Zabolotskaya Equation

U, — (uux)x = uyy ©)
For simplicity, we consider one dimentional form of equation. By this assumption we have Eq. (5) in form:

u,— (ux)z —uu, = 0 ©)
Introduction a complete variation defines:

n =k +ot, u=u(n), (7
We Have

ou" —k(u') —kuu" =0 ®)

Where prime denotes the differential with respect to 77.

The Exp-Function method is very simple and straight forward, it is based on the assumption of traveling
wave solutions can be expressed in following form:

In order to determine values of ¢ and p, we balance the linear term of the highest order of " with the
highest order nonlinear term #u" in Eq. (8), we have:

4G exp[(3p + c)r7]+

9

c, exp[4p77]+... ©)

" = cy exp[(2p + 2c)77]+ (10)
c, exp[4p77]+...

Where ¢; s are determined coefficients only for simplicity. Balancing highest order of Exp-Function in Egs.
(9) and (10), we have:

3p+tc=2p+2c (an
which leads to the result:
p=c. (12)

Similarly to determine values of d and ¢, we balance the linear term of lowest order in Eq.(8)
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= ..+d, exp[— (3q+d)77]
..td, exp[—4q77]

(13)

And

v _ ot dyexpl=(2g+2d)y]

uu
..td, exp[—4q77]

(14)
Where d; s are determined coefficients only for simplicity. Balancing the lowest order of Exp-Function in
Egs. (13) and (14), we have:
~(3g+d)=—-(2q+2d) (15)
This leads to the result:
g=d. (16)

Casel: p=c=1,g=d=1

a, exp(n)+a, +a_ exp(-7)
uiin) = 17
) exp(n7)+b, +b_, exp(-7) a

We set b, =1for simplicity. Substituting Eq. (17) into Eq. (8), and using the Maple, equating to zero
coefficients of all powers of Exp(nn) yield to a set of algebraic equations to solve a,,b,,a,,a_,,b .,k and
using Maple, we obtain coefficients:

a, =ab,, k=k, b.=b., a, =a,,
0 1% 1 1 1 1 (18)
b, = b, w=0, a,=ab,
Wherea,,b,,b_,,k and @ are free parameters. We therefore obtain the following solution:
ab e +ab,+ae™
I/l(x,t) =—— —kx—at = kx-li-a)t (19)
be +b, +e
Case2: p=c=2,9g=d =2
()= 22 x020) + 0y expln)+ay + ., expln) +a, expl-207) 0
by exp(~217)+ b, exp(i7)+ b, +b_, exp(~1)+b._, exp(~217)
we set b, =1 for simplicity, then the trial Function, Eq. (20) is simplified as follows:
()= 2202+ ayexpln) +ay +ayexpln)+ a, expl-21) on
by exp(~21)+exp(i7)+b, +b._, exp(~n)+b._, exp(~27)
As we explain above, we obtain:
a, 8 a, a_,b,
a, =—=, a,=—— , a, = , b,=0,
" b, P Tbb, * b, ! 22)
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8
b2:_ﬁ’ 617120, w=w, a,=a._,, bzzbz, b():bo
0
Where a_,,b_,,k, @ and b, are free parameters. We therefore obtain the following solution:

—2kx—2a)t_+_a—2b0 + 9 kror 8 Ay opeidan

a_,e
ul(x,t)= b, b, ;h% (23)
b72€72M72wl +b0 +blekx+wt _ﬁeZkHZwt
0

Newell-Whitehead Equation:
We consider the Newell-Whitehead Equation

_ 3
u,=u, +u—u’, 24
Introducing a complete variation 77 defined as:7) = kx + @t and u = u(n), we have:

ou' —k*u"—u+u’ =0, (25)

Where prime denotes the differential with respect to77. we suppose that the solution of Eq. (25), can be
expressed as:

a.explen]+...+a_,exp[—dn]
a,explpn]+..+a_, exp[—qn]

u(n) = (26)

By the same manipulation as illustrated in the previous section, we can determine values of ¢ and p by using

balancing u’and u”in Eq. (25).

4= exp[(3p + 0)77]+

c, exp[4p77]+ @7)
R exp|(Be+ plnl+ .. 28)
c4exp[4p77]+... '
Balancing the highest order of Exp-Function in Egs. (27) and (28), we have:
3p+c=3c+p, (29)
Which leads to the result:
p=c. (30)
By a similar derivation as illustrated in the previous section we obtain:
d=gq. GD

Casel: p=c=1l,q=d =1

The trial Function Eq.(26) reduces:
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)= a, exp(n)+a, +a_ exp(-n)

(32)
exp(77) + b, +b_, exp(-7)
We set b, = 1for simplicity. As we Explain above, we obtain:
b,=b,, a,=a, k=k, b, =—a,,
a, =-1, o=2-k, a,=-b, (33)
Where a,,b_,k are free parameters. We therefore obtain the following solution:
b e—loc—(Z—kz)t tq. — elfx+(2—k2)t (34)
_ Y4 0
u(x,t) N b ok T+ (2-k)t
e —a,+e
Case2: p=c=2,9g=d =2
u(n) = a, exp(2n7) + a, exp(n7) + a, +a_, exp(—n) + a_, exp(-277) G5

exp(2n) + b, exp(n) + b, +b_, exp(-1n) +b_, exp(—27)

There are some free parameters in Eq. (35), we set b, =1, a ,=b ,=b, =0 for simplicity, then the trial

Function, Eq. (35) is rewritten in form:

u ()= a, exp(21n7)+a, exp(n7)+a, +a_, exp(-n) 6
exp(iy) +b,+b_, exp(—iy)

These set of solutions are obtained by the same way as we explained in the solution of case 1 of this equation:

a, =-1, a,=0, a,=0, by =—a,,
(37)
w=1+k?, k=k, a,=a,, b,=0
Where a,, k are free parameters. Substituting Eq. (37) in to Eq. (36) yields the following solution:
2
ao _ ekx+(1+k )t
u(x,t): ke +(1+ k2 )t (38)
—a, t+e
Buckmaster Equation:
We consider the Buckmaster Equation
4 3
u, = W)+ W), (39)
Making the transformation (2), Eq. (39) becomes:
3 3 40
4k(u)y'v' +u” —au =0, (“40)

Where prime denotes the differential with respect to77. We suppose that the solution of Eq. (40), can be
expressed as:

a,explen]+...+a_, exp[-dn]

u(n) =
a,explpn]+..+a_, exp[—qn]

(41)
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By the same manipulation as illustrated in the previous section, we can determine values of ¢ and p by

using balancing w'u'and u’in Eq. (40).

_G exp[cn]+ G exp[(4p + c)n]+
C, exp[pry]+... c, exp[5p77]+

u = S exp[(p + 4c)77]+
c, exp[5p77]+

Balancing the highest order of Exp-Function in Eq.(42) and (43), we have:
4p+c=p+4c,

Which leads to the result:
p=c,

By a similar derivation as illustrated in the previous section we obtain:

d=gq.

Casel: p=c=1,g=d =1
The trial Function Eq. (42) reduces:

_ a,exp(i) +a, +a, exp(=1)
exp(7) + by +b_, exp(=17)

(42)

(43)

(44)

(45)

(40)

(47)

Substituting Eq. (47) into Eq. (40), and using the maple, equating to zero coefficients of all powers of
exp(nn) yields a set of algebraic equations for a,,b,,a,,a_,,b,,k (see Appendix). solving this system with

the aid of Maple, we obtain coefficients:

1b a
kZE—O, alzb—o, a_1=0, b_1=0,
a o
a2
_ _% —
b, =b,, a)—b—z, a, =a,
0
where a, b, are free parameters. We therfore obtain the following solution:
1 b, aoz
—Lx=y
a 22 )C+b )
a,+-2e " "
u(x,1) = L 5
1by a
Ea—x+b—2t
by+e ™ ™
Conclusions:

(43)

(49)

In this Letter, Exp-Function method is used for finding solitary solutions of Khokhlov-Zabolotskaya and
Newell-Whitehead and Buckmaster Equations. It can be concluded that the Exp-Function method is a new
promising and powerful method for nonlinear evolution equations arising in mathematical physics. Its
applications are worth further studying. It is worth pointing out that the Exp-Function method presents a rapid
convergence for solutions. The Exp-Function method has got more advantages in comparison with other
methods. Calculations in Exp-Function method are simple and straightforward. The reliability of the method and
the reduction in the size of computational domain give this method a wider applicability. The results show that
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the Exp-Function method is a powerful mathematical tool for solving nonlinear partial differential equation
systems having wide applications in engineering.

Appendix
3
a, —aa, =0,
—4ka’a, + 4ka ‘b, - wa, — 4wa,b, + 3a,’a, + 2a,’b, = 0,
~wa_, - 4wab_ +3a_ja,’ +a’b,’ +6a,’a,b,—8ka _a’ + 2a’b_, +8ka b,

—6wa,b,” —4wayb, — 12 ka,’a,” +3a,a,” +12 ka >a,b, = 0,
12ka,’a,’b, +8ka_a,’b, —4wa,b_, +6a_a,a, —4wa_b, —12ka,a,’ +2a,’b_b, +3a:’ a,b,’
—4wab,’ +6a,’ab_, +6a_a,’b, —36ka_a,’a, —6wab,” +28ka’a,b_, +a,’ +6a,a,’b,
—12wa,b b, =0,
- 6a)a_1b02 +a’b —48ka_1aoza1 —4ka04 + 6a1a02b_1 ~4wa_b | —12wab_b, + 351141021)02
—6wa,b ’ +3a_a,’b,’ +6a,’a,b_ b, —12wa,b_b," +12ka,’a,a_b, +6a_a,’b_,
+12a_,a,a,b, +3a_,a,’ +2a,’b, + 4ka,’ a,b, — 4wa,b,’ +36ka,’a,’b_ +24ka_a’b_, +
+3a_’a, - a)alb04 —24ka ‘a’ =0,
- 4a)a,b03b7, — 20 ka 7,a03 + 4a)a7,b03 -12 a)albobfl2 —6a’ia_b,b_b, + 6a71a02b0
- 12wa_b_b, —60ka _‘aya, — wa,b," — 6wayb_> +60ka _a’a,b_, +6a_’ab,
+ 2%3174 -12 a)aobfl2 + 6a71a,a0b02 + 6a1a02b7,b0 + 20 kalao3b7, + 3alzaob42
+a,’b, ++12a_ja,a,b_, +3a_’a, =0,
—4wab_ > —4wayb_ b, —12ka_ a,ab, +3a_a’b > +a_’ —24ka_’a, +48ka_a,a,’b.
—6wa,b,’b_} —36ka_’a,’ +3a,a,’b_’ +2a,’b_b, +6a_’b,a, +24ka,’a_’b_ +4ka,’'b_,
+12a_a,a,b_b, —120wa_b_b,” +6a_’ab_, +3a_’ab,” +3a_a,’b,’ —wa_b,' +6a_a,’b_,
—12wa,b,b_* —6wa_b_* —4ka, a_b, =0,
6a_’ab_b, —6wa,b,’b_> +2a_’b, +6a_a,’b_b, +a,’b.,’ —12wa_b_’b, - 28ka,a_’
—4@a_b_ b, +6a_’ab_, —4wabb_’ +3a,a_’b,” +36ka,a,a_’b_ +12ka_a,’b.,
—12ka_’a,’b, —4wayh_’ +6a_a,a,b,’ —8ka_’ab, =0,
afbo2 +2a_’b  —8ka ' —4(()6101301343 —4wa_b_ +3a_ ‘ab’ -}—12kaflzaozb71 —12ka713a0b0
—6wa_b_ b, +6a_’aybb, +8ka_ab  —wab ' +3a_a,’b,’ =0,
4ka_’agb_, —4wa_b_ by +2a_’b b, —4ka_ by +3a_ ab’ —wab." =0,

—wa_b,*+a b’ =0,
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