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Abstract: In this paper, using the variational iteration method we solve a model parabolic mixed 
problem with purely boundary integral conditions arising in the context of thermoelasticity. Finally, 
illustrative examples are given to show the efficiency of the method. 
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INTRODUCTION 

 
The variational iteration method see He (1997, 1998), which is a modified general Lagrange multiplier 

method see He et al. (2007), has been shown to solve effectively, easily and accurately, a large call of nonlinear  
problems with approximations which converge quickly to exact solutions. It was successfully applied to 
ordinary and partial differential equations see Rafei et al. (2007) and He (1998), recently to delay differential 
equations see Saadatmandi et al. (2009) and Yu (2008), and other fields see Yu (2008), Abdou et al. (2005), 
Wang et al. (2007), Bo et al. (2007), Dehghan et al. (2007, 2008), Abbasbandy (2007, 2008) and Abbasbandy et 
al. (2008). 

In this paper, we will be dealing with the following equation: 
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with the initial conditions 
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where Erf ,,  and G  are sufficiently regular given functions of the indicated variables and T  is a 

positive constant. This mathematical model studied in Bozuziani  (2002), describes the quasi static flexure of a 
thermoelastic rod, where conditions )3( and )4(  represent, respectively, the average and weighted average of 

the entropy v .  
Although an increasing attention has been recently given to evolution problems which involve nonlocal 

boundary conditions see Beilin (2001), Cannon et al. (1990) and Dehghan et al. (2003, 2006, 2007, 2009), only 
few works have been consecrated to mixed parabolic problems with purely integral boundary conditions over 
the spatial domain Bouziani (1996, 2002). 

The plan of the paper is as follows. In Section 2, we transform problem )4()1(   to an equivalent one 

with homogeneous integral conditions, namely, problem )10()7(  . In Section 3, we give a brief description 

of  the variational iteration method. In Section 4, we apply the VIM for solving the problem )10()7(  . In 

Section 5, numerical examples are simulated to demonstrate the high performance of proposed method. Finally, 
some conclusions are summarized in the last section. 
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2. Reformulation of the Problem: 
For the sake of simplicity, we transform problem )4()1(   with inhomogeneous conditions )3( and )4(  

to an equivalent one with homogenous conditions. To do so, we use the following transformation 
 

( , ) ( , ) ( , ), ( , ) (0,1) [0, ],u x t v x t R x t x t T             (5) 

 
Where 
 

   ( , ) 6 2 ( ) ( ) 2 3 ( ) 2 ( ) .R x t G t E t x G t E t             (6) 

 
Then, the function u  is seen to be the solution of the following problem 
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with the initial conditions 
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and the integral  boundary conditions 
 

 
           (9) 
 

1

0
( , ) 0, 0 ,xu x t dx t T              (10) 

 
Where 

 
  
              (11) 

 
 
 

              (12) 
 
Hence, instead of looking for the function v , we search for the function u . The solution of the problem 

)4()1(   will be simply given by the formula ),(),(),( txRtxutxv  . 

 
3. A Brief Description of the Variational Iteration Method: 

To illustrate the basic concepts of the VIM, we consider the following differential equation: 
 

      ,L u x N u x g x                  (13) 

 
Where L is a linear operator, N is nonlinear operator and )(xg is a given continuous function. 

The basic character of the method is to construct a correction functional as follows: 
 

   1 0
( ) ( ) ( ) ( ) ( ) ( ) ,

x

n n n nu x u x s L u t N u t g t dt              (14) 

 

Where   is a general Lagrange multiplier which can be identified via variational theory. nu  is the nth 

approximate solution of the VIM, and nu~  denotes a restricted variation, i.e. 0~ nu . 
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4. Application of the Variational Iteration Method: 
According to the variational iteration method, to solve the problem )10()7(  , we can construct the 

following correction functional: 
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where  nu  is n the  iteration of the VIM for u . 

Calculating variation with respect to nu , and noting  that 0~ nu  we obtain: 
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by parts we have 
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For arbitrary nu , the  following stationary conditions are obtained: 
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Therefore the Lagrange multiplier can be obtained as follows:  

 
( ) 1s                (19) 

 
So, the following iteration formula can be obtained as: 
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and we always begin  with .)(),( 00 xUtxu    

Therefore by the iteration formula )20( , we can obtain the numerical solution of the problem 

)10()7(  . 

 
5. Numerical Examples: 

In this section, some numerical examples are simulated to demonstrate the high performance of proposed 
method. 

 
Example 1:  

We consider the following equation  
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and the integral  boundary conditions 
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 This problem has the exact solution txetxv ),( . From )11(),6(  and )12( we have 
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Therefore, we can apply the proposed method in the previous section for solving the problem )10()7(  . 

Then from )20( , we have 
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We use )(),( 00 xUtxu  as the initial guess. Then, we use above formula. We can obtain the other 

iterations as follows 
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that gives the exact solution by tx
n

n
etxvtxv 


 ),(lim),( , where ),(),(),( txRtxutxv nn  . 

We can see the error behavior for 4th, 6th and 8th iterations of VIM in Figs. 1-3. 
 
Example 2: 

 In this example, we consider the following problem  
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Fig. 1: Plot of the error function ),(),( 4 txvtxv   for Example 1. 

 

 
 

Fig. 2: Plot of the error function ),(),( 6 txvtxv   for Example 1. 

 
The exact solution of this problem is )cos()sin(),( txtxv  . From )11(),6(  and )12( we have 
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Fig. 3: Plot of the error function ),(),( 8 txvtxv   for Example 1. 

 
Therefore, we can apply the proposed method in the previous section for solving the problem )10()7(  . 

We use )(),( 00 xUtxu  as the initial guess, then from )20( , we obtain 
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We observe that )cos()sin(),(lim),( txtxvtxv n
n




. Similar to the previous example, it is clear 

from Figs. 4-6 that the difference between the exact and the numerical solutions is very small for 7th , 8th and 9th 
iterations of VIM. 

 
Example 3:  

In the third example, we consider the following equation 
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Fig. 4: Plot of the error function ),(),( 7 txvtxv   for Example 2. 

 

 
 

Fig. 5: Plot of the error function ),(),( 8 txvtxv   for Example 2. 

 
with the initial conditions 
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Fig. 6: Plot of the error function ),(),( 9 txvtxv   for Example 2. 

 

 
 

Fig. 7: Plot of the error function ),(),( 7 txvtxv   for Example 3. 

 

This problem has the exact solution )cos(),( xetxv t . From )11(),6(  and )12( we have 

 

 
 

  .)46)(1sin()612(1)1sin()1cos()cos()(

),46)(1sin()612(1)1sin()1cos(),(

),46)(1sin()612(1)1sin()1cos(),(

0 







xxxxU

xexetxF

xexetxR
tt

tt

 

 
Now, we can use the proposed method in the previous section for solving the problem )10()7(  . We 

use )(),( 00 xUtxu  as the initial guess, then from )20( , we obtain 
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It is clear from the above results that  )cos(),(lim),( xetxvtxv t
n

n




 .   

Similar to the previous Figs. 7-9. show high accuracy of the obtained results for 7th, 8th and 9th iterations of 
VIM. 

 
Fig. 8: Plot of the error function ),(),( 8 txvtxv   for Example 3. 

 

 
Fig. 9: Plot of the error function ),(),( 9 txvtxv   for Example 3. 
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Conclusions: 
In this work, we investigate a model parabolic mixed problem with purely boundary integral conditions 

arising in the context of thermoelasticity. For the sake of simplicity, we transform problem with inhomogeneous 
conditions to an equivalent one with homogenous conditions. Then, We have shown that the variational iteration 
method can be used successfully for solving this problem. Finally, numerical examples are simulated to 
demonstrate the high performance of proposed method. All of the computations have done by the Maple 
software. 
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