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Abstract: In this paper, we propose a recurrent neural network for solving nonlinear convex 
programming problems subject to linear equality and inequality constraints. Using this network 
we can solve primal programming problems and their duals, simultaneously. The proposed neural 
network has a simpler structure than the existing neural networks for solving such problems, and 
converges very faster to exact primal and dual solution.  
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INTRODUCTION 

 
The dynamical systems approach to solving constrained optimization problems was first proposed by 

Pyne (1956), and later studied by Rybashow (1965), Karpinskaya (1967) and others recently, due to renewed 
interest in neural networks. 

In many applications, real-time solutions are usually imperative. One example of such applications in 
image processing is the solution to the image fusion problem in real-time wireless image transmission see Li 
et al. (1995). Compared with traditional numerical methods for constrained optimization, the neural network 
approach has several advantages in real-time applications. First, the structure of a neural network can be 
implemented effectively using VLSI and optical technologies. Second, neural networks can solve many 
optimization problems with time-varying parameters. Third, the ordinary differential equation techniques 
can be applied directly to the continuous-time neural networks numerically for solving constrained 
optimization problems effectively. Therefore, neural network methods for the solution of optimization 
problems have been received considerable attention see Kennedy et al. (1988), Maa et al. (1992), Cichocki 
et al. (1993), Zak et al. (1995) and Xia (1996). For the primal-dual solution of linear, quadratic and 
nonlinear programming problems see Malek's models in Malek et al. (2005, 2007), Yashtini et al. (2007, 
2008) and Oskoei et al. (2007). 

The reminder of this paper is arranged as follows. In Section 2, we introduce the basic problem 
formulation. In Section 3, a neural network model for solving nonlinear convex programming problems 
subject to linear equality and inequality constraints is proposed. In Section 4, several examples are 
considered to evaluate the power and effectiveness of proposed neural network approach. Some conclusions 
are summarized in the last section. 

     
2. The Basic Problem Formulation: 

Consider the following nonlinear convex programming problem subject to linear equality and 
inequality constraints. We call it the primal problem: 
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where x  is the n-dimensional decision vector, RRf n :  is a continuously differentiable and 

convex function on nR . npnm RARD   , are coefficient matrices and pm RcRb  ,  are 

constant column vectors. The minimization problem for the primal problem (1) will be written as  
 

       , , ,T TMinimize L x y z f x y Dx b z Ax c                      (2) 
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where  zyxL ,,  is the Lagrange function and   mpp RyzRzRz   ,0 are  

Lagrange multipliers. According to the Karush-Kuhn-Tucker (KKT) condition see Bertsekas (1989), *x  is a 

solution to  1  if and only if there exist pm RzRy  ** , such that  *** ,, zyx  satisfies the following 

conditions: 
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where f  is the gradient of .f  

 
3. Neural network model: 

Here, we propose a novel recurrent neural network model for solving problem  1  and its dual as 

follows: 
      

 
                      (4) 
 
 
 
                      (5) 
 
 
 
                      (6) 
 
where coefficient k  is some positive constant. The main property of the above system is stated in 

following theorem. A block diagram of neural network model    64   is shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: A simplified block diagram of model    64  . 
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Theorem 1:  

If the solution of the neural network described by the differential equations    64   converges to a 

stable state      .,.,. zyx then  .x  converges to the optimal solution of the primal problem  1  and the 

Lagrange multipliers    .,. zy  converge to the optimal solution of the dual of the convex programming 

problem  1 . 

 
Proof:  

Let ix  be the ith component of x ,  then Eq.  4  can be written as:  

 
 

                      (7) 
 
 
 
 
                      (8) 
 
 

Condition  8  is to ensure that x  will be bounded from below by 0. Let *** ,, zyx be the limit of 

   tytx , and  tz , respectively. That is  
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By stability of convergence, we have .0,0,0
***


dt

dz

dt
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From Eqs.  7  and  8  we can write 

 
                     (10) 
 
 
 
                      (11) 
 
In other words: 
 
 
                      (12) 
 
 
 
                      (13) 
 
or  

 
 
                      (14) 
 
 
 
                      (15) 
 

Similarity, from Eqs.  5  and  6 , we have: 
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By KKT conditions in  3  and conditions provided in    1814   we show that *x  and  ** , zy  

are the optimal solutions for the problem  1  and its dual problem, respectively. This completes the proof. 

The Euler method is used to solve the system of ordinary differential equations given by Eqs. 

   64  . The following Matlab code describes the discrete implementation of the recurrent neural network 

model proposed with (4), (5) and (6). Here, the coefficient k  is set to be equal to the time step dt  for the 
simplicity of the calculations. 

 

  

  
 

      
 

;

;

;0,max

;***

;

;0,max

;**

;

;**

:1

end

dxxx

xdxxdx

dzzAdyyDdxxfdtdx

dzzz

zdzzdz

cdxxAdtdz

dyyy

dxxDbdtdy

nifor

TT















 

 
4. Numerical Examples: 

To demonstrate the behavior and properties of the proposed recurrent neural network model, three 
examples are simulated by using the Euler method for time step 1.0dt  and n=1000. 

In Table 1, 2 and 3 we give various set of initial input values to the novel recurrent neural network 
model and the corresponding optimal solutions. 

In Figs 2-13 trajectories for the different initial vector points are drawn to show the behavior of the 
convergence of the solutions as the number of iterations is increased.    

 
4.1. Example 1: 

Consider the following convex nonlinear programming problem: 
 

 

.0,,,

,4.05.0

,5.05.0..
30

5.05.04.0min

4321

321

421

3
12

4
2
321

2
2

2
11







xxxx

xxx

xxxts

x
xxxxxxxxf

 

 
We have tasted the neural network model proposed in Eqs. (4)-(6) using all four possible initial points 

(Four possible combination for feasible and infeasible points) for the primal and dual problems. The 
numerical results for this example are obtained in the Table 1 and Figs. 2-5. It is shown that after 80 
iterations the input initial value to the novel neural network model will converge to the stable optimal 
solutions  0,0,97632866554379.0,01182566722810.0* x and 

)0,88176332771899.0(),( ****  zyzy  for primal and its dual problem respectively.  
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Fig. 2: Trajectories of example 1 problem for the feasible initial vectors )2,1.1,1,1(0 x  and )1,1(),( 00 zy  

using model     64  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3: Trajectories of example 1 problem for the feasible and infeasible initial vectors )2,1.1,1,1(0 x  and 

)1,1(),( 00 zy , respectively using model     64  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Trajectories of example 1 problem for the infeasible and feasible initial vectors )2,1,2,1(0 x  and 

)1,3(),( 00 zy , respectively using model     64  . 

 
 
 
 
 



Aust. J. Basic & Appl. Sci., 5(10): 814-823, 2011 

819 
 

Table 1: Numerical results for the primal and dual problems of example 1 using model (4) –(6) for four different initial points (feasible and infeasible). 

Initial points                       Feasible or infeasible                                                        Optimal solution                                                                            Figure 

Primal          Dual                         Primal               Dual                                        Primal                                            Dual 

0x            00 zy                                                                                             
*x                                     

** zy  

--------------------------------                                                                                     --------------------------------------------------------------------- 

1              -1          1                                                                               0.25667228100118       0.63327718998817        0 

1                                              Feasible        Feasible                            0.28665543799763                                                                                  Fig. 2 

1.1                                                                                                          0 

2                                                                                                             0.00000000000000 

1              1          -1                                                                               0.25667228100118       0.63327718998817        0 

1                                              Feasible        Infeasible                         0.28665543799763                                                                                  Fig. 3 

1.1                                                                                                         0 

2                                                                                                            0.00000000000000 

1              -3           1                                                                              0.25667228100118       0.63327718998817        0 

2                                              Infeasible        Feasible                          0.28665543799763                                                                                  Fig. 4 

-1                                                                                                            0 

-2                                                                                                            0.00000000000000 

-1              1          -1                                                                              0.25667228100118       0.63327718998817        0 

2                                              Infeasible        Infeasible                       0.28665543799763                                                                                  Fig. 5 

4                                                                                                             0 

3                                                                                                             0.00000000000000 

 
Table 2: Numerical results for the primal and dual problems of example 2 using model (4) –(6) for four different initial points (feasible and infeasible). 

      Initial points                       Feasible or infeasible                                                          Optimal solution                                                                         Figure  

Primal          Dual                         Primal               Dual                                        Primal                                       Dual 

  0x              0y                                                                                                   
*x                                                

*y  

-----------------------                                                                                     --------------------------------------------------------------------- 

  0.5              -2                                                                                         0.99999999999564        -0.00000000001717         

  0.5              -1                           Feasible        Feasible                            0                                     -0.00000000185370                                         Fig. 6 

  0.3                                                                                                           0 

  0.7                                                                                                           0.99999999962878 

   0.5              2                                                                                         1.00000000000358          0.00000000001375       

   0.5              1                            Feasible        Infeasible                        0                                       0.00000000174880                                         Fig. 7 

   0.3                                                                                                         0 

   0.7                                                                                                         1.00000000035736 

   0.6              -3                                                                                        0.99999999999171        -0.00000000003181 

   -0.2             -1                           Infeasible        Feasible                        0                                    -0.00000000204367                                          Fig. 8 

   0.1                                                                                                          0 

   1.5                                                                                                          0.99999999958238 

   0.6              2                                                                                          1.00000000000356         0.00000000001365       

   -0.2             1                             Infeasible        Infeasible                     0                                      0.00000000147742                                          Fig. 9 

   0.1                                                                                                          0 

   1.5                                                                                                          1.00000000030191 
 

Table 3: Numerical results for the primal and dual problems of example 3 using model (4) –(6) for four different initial points (feasible and infeasible). 

      Initial points                       Feasible or infeasible                                                          Optimal solution                                                                         Figure  

Primal          Dual                         Primal               Dual                                        Primal                                       Dual 

  0x              0y                                                                                                   
*x                                                

*y  

-----------------------                                                                                     --------------------------------------------------------------------- 

  0.3            -3                                                                                        0.36722148927283         -0.53111404290867        

  0.7                                         Feasible        Feasible                            0                                                                                                                 Fig. 10 

  0                                                                                                           0.63277851072717 

  0.3             2                                                                                         0.36722148927283         -0.53111404290867        

  0.7                                         Feasible        Infeasible                          0                                                                                                                  Fig. 11 

  0                                                                                                           0.63277851072717 

  1               -3                                                                                        0.36722148927283         -0.53111404290867        

  0                                            Infeasible      Feasible                           0                                                                                                                  Fig. 12 

  -1                                                                                                         0.63277851072717 

  1                 2                                                                                        0.36722148927283         -0.53111404290867        

  0                                            Infeasible      Infeasible                         0                                                                                                                   Fig. 13 

  -1                                                                                                         0.63277851072717 

                                                                                                             

 
 

4.2. Example 2: 
Consider the following convex nonlinear programming problem: 
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Fig. 5: Trajectories of example 1 problem for the infeasible initial vectors )3,4,2,1(0 x  and )1,1(),( 00 zy  

using model     64  . 

 
   
 
 

 
 
 

 
 
 
 
 
 
 
 
 
Fig. 6: Trajectories of example 2 problem for the feasible initial vectors )7.0,3.0,5.0,5.0(0 x  and )1,2(0 y  

using model     64  . 

 
   
    
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Trajectories of example 2 problem for the feasible and infeasible initial vectors )7.0,3.0,5.0,5.0(0 x  

and )1,2(0 y , respectively using model     64  .    
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We have tasted the neural network by choosing four arbitrary possible initial points. i.e., all possible 
combinations for feasible and infeasible starting values for primal and dual problems are considered. The 
numerical results are gathered in Table 2 and Figs. 6-9 show the behavior of the convergence for the initial 
point to the optimal solution when the number of iterations is increased. As it is obvious in these figures at 
most 250 iterations are needed that successfully converge to the correct optimal solution  1,0,0,1* x  

and  0,0* y  for primal and dual problems respectively.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: Trajectories of example 2 problem for the infeasible and feasible initial vectors )5.1,1.0,2.0,6.0(0 x  

and )1,3(0 y , respectively using model     64  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9: Trajectories of example 2 problem for the infeasible initial vectors )5.1,1.0,2.0,6.0(0 x  and )1,2(0 y , 

respectively using model     64  . 

 
4.3. Example 3: 

Consider the following convex nonlinear programming problem: 
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  Its optimal solutions are  27176327785107.0,0,72833672214892.0* x  and 

08675311140429.0* y  for the primal and its dual problem respectively. In Table 3 we give four different 

set of initial input values to the neural network model and their related optimal set values. In Figs. 10-13 it is 
shown that for all four possible initial points (feasible and infeasible) one need not more than 120 iterations 
to successfully converge to the correct optimal solutions. Simulations for the convergence of the trajectories 
are shown in Figs. 10-13 for various set of the initial points of Table 3.  
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Fig. 10: Trajectories of example 3 problem for the feasible initial vectors )0,7.0,3.0(0 x  and 30 y , 

respectively using model     64  . 

 
  
 

 
     

 
 
 
 
 
 
 
 
 
 
Fig. 11: Trajectories of example 3 problem for the feasible and infeasible initial vectors )0,7.0,3.0(0 x  and 

20 y , respectively using model     64  . 

Fig. 12: Trajectories of example 3 problem for the infeasible and feasible initial vectors )1,0,1(0 x  and 

30 y , respectively using model     64  . 

 
5. Conclusions: 

The neural network proposed in this paper has many advantages compared to existing neural networks 
for solving convex nonlinear programming problems. It converges to the exact solutions of primal and dual 
problem without requiring any parameter tuning. The new model is simple to use. Another advantage of the 
new model is that it is very intuitive and can be explained in common sense without formal mathematics. 
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Fig. 13: Trajectories of example 3 problem for the infeasible initial vectors )1,0,1(0 x  and 20 y , 

respectively using model     64  . 
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