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Abstract: Recently, fuzzy linear regression and fuzzy polynomial regression is considered by Mosleh 
et al., (2010; 2011). In this paper, a novel hybrid method based on fuzzy neural network for 
approximate fuzzy coefficients (parameters) of fuzzy hyperbolic regression models with fuzzy output 
and crisp inputs, is presented. Here a neural network is considered as a part of a large field called 
neural computing or soft computing. Moreover, in order to find the approximate parameters, a simple 
algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our 
approach by some numerical examples.  
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INTRODUCTION 
 

The concept of fuzzy numbers and fuzzy arithmetic operations were first introduced by Zadeh (1975) 
Dubois and Prade (1978). We refer the reader to (Kaufmann, 1985) for more information on fuzzy numbers and 
fuzzy arithmetic. 

Regression analysis is of the most popular methods of estimation. It is applied to evaluate the functional 
relationship between the dependent and independent variables. Fuzzy regression analysis is an extension of the 
classical regression analysis in which some elements of the model are represented by fuzzy numbers. Fuzzy 
regression methods have been successfully applied to various problems such as forecasting (Chang, 1997; Chen 
1999; Tseng, 2002; Ghavidel, 2011) and engineering (Lai, 1994). Thus, it is very important to develop 
numerical procedures that can appropriately treat fuzzy regression models. Modarres  et al., (2005) proposed a 
mathematical programming model to estimate the parameters of a fuzzy linear regression. 

  

,= 2211 inniii xAxAxAY   

 
where Rijx  and 

in YAAA ,,,, 21   are symmetric fuzzy numbers for njmi ,1,2,=,,1,2,=  . 

Very recently, Mosleh et al., (2010; 2011) proposed a learning algorithm of fuzzy neural network with crisp 
inputs, fuzzy weights and fuzzy output for adjusting fuzzy weights of fuzzy linear regression model and fuzzy 
polynomial regression model with fuzzy output and crisp inputs. 

Ishibuchi  et al., (1995) proposed a learning algorithm of fuzzy neural networks with triangular fuzzy 
weights and Hayashi  et al., (1993) fuzzified the delta rule. Buckley and Eslami, (1997) consider neural net 
solutions to fuzzy problems. The topic of numerical solution of fuzzy polynomials by fuzzy neural network 
investigated by Abbasbandy et al., (2006), consists of finding solution to polynomials like 

0
2

21 = axaxaxa n
n   where Rx  and naaa ,,, 10   are fuzzy numbers, and finding solution to 

systems of s  fuzzy polynomial equations such as (Abbasbandy, 2008):  
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 where Rnxxx ,,, 21   and all coefficients are fuzzy numbers. Also, Otadi, et al., (2011) proposed a 

learning algorithm of fuzzy neural network to estimate the solution of a fully fuzzy linear system. 
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In this paper, we first propose an architecture of fuzzy neural network (FNN) with fuzzy weights for real 
input vectors and fuzzy targets to find approximate coefficients to fuzzy hyperbolic regression model 
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where i  indexes the different observations, Rinii xxx ,,, 21  , all coefficients and iY  are fuzzy numbers. 

The input-output relation of each unit is defined by the extension principle of Zadeh, (1975). Output from the 
fuzzy neural network, which is also a fuzzy number, is numerically calculated by interval arithmetic (Alefeld, 
1983) for fuzzy weights and real inputs. Next, we define a cost function for the level sets of fuzzy outputs and 
fuzzy targets. Then, a crisp learning algorithm is derived from the cost function to find the fuzzy coefficients of 
the fuzzy hyperbolic regression model. The proposed algorithm is illustrated by some examples in the last 
section. 

 
2  Preliminaries: 

In this section the basic notations used in fuzzy calculus are introduced. We start by defining the fuzzy 
number.  

 
Definition 1: 

A fuzzy number is a fuzzy set [0,1]=: 1 Iu R  such that 

i. u  is upper semi-continuous; 
ii. 0=)(xu  outside some interval ],[ da ; 

iii. There are real numbers b  and c , ,dcba   for which 

1. )(xu  is monotonically increasing on ],[ ba , 

2. )(xu  is monotonically decreasing on ],[ dc , 

3. cxbxu 1,=)( . 

The set of all the fuzzy numbers (as given in definition 1) is denoted by 1E . 

An alternative definition which yields the same 1E  is given by (Kaleva 1987; Friedman, 1999).  
 

Definition 2: 

A fuzzy number u  is a pair ),( uu  of functions )(ru  and )(ru , 10  r , which satisfy the following 

requirements: 

i. )(ru  is a bounded monotonically increasing, left continuous function on (0,1] and right continuous at 0 ; 

ii. )(ru  is a bounded monotonically decreasing, left continuous function on (0,1] and right continuous at 0 ; 

iii. 1),0()(  rruru . 

A crisp number r  is simply represented by 1.,0=)(=)(  ruu The set of all the fuzzy numbers is 

denoted byE1. 

A popular fuzzy number is the triangular fuzzy number ),,(= rlm uuuu  where mu  denotes the modal value 

and the real values 0>lu  and 0>ru  represent the left and right fuzziness, respectively. Its parametric form is  

).(1=)(1),(=)(   rmlm uuuuuu  

  
Triangular fuzzy numbers are fuzzy numbers in LR representation where the reference functions L and R 

are linear. The set of all triangular fuzzy numbers on R is called ZF̂ . 
 

2.1  Operations on Fuzzy Numbers: 
We briefly mention fuzzy number operations defined by the extension principle (Zadeh, 1975). Since 

coefficients vector of feedforward neural network is fuzzified in this paper, the operations we use in our fuzzy 
neural network are fuzzified by means of the extension principle. The h -level set of a fuzzy number X is 
defined by  
 

1,<0})(|{=][  hforhxxX Xh R  
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 and 
hh

XX ][=][
(0,1]0  

.  Since level sets of fuzzy numbers become closed intervals, we denote hX ][  by  

 
],][,][[=][ U

h
L
hh XXX  

 
 where L

hX ][  and U
hX ][  are the lower and the upper limits of the h -level set 

hX ][ , respectively. The result of a 

fuzzy addition of triangular fuzzy numbers is a triangular fuzzy number again. So we only have to compute the 
following equation (Zimmermann, 1996):  
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From interval arithmetic (Alefeld, 1983), the above operations on fuzzy numbers are written for h -level 

sets as follows:  
 

1,<0][=][=  hforBABA hh                                                                                           (1) 

 

],][][,][][[=][ U
h

U
h

L
h

L
hh BABABA                                                                                                          (2) 

 

0],].[,].[[=].[ kAkAkAk U
h

L
hh  

 

0.<],].[,].[[=].[ kAkAkAk L
h

U
hh  

 
We describe the classical definition of distance between fuzzy numbers (Feuring, 1995). 
 
Definition 3: 

The mapping  RZFZFd ˆˆ:ˆ  is defined by  

|),||,||,(|=),(ˆ
 bababamaxBAd mm   

where ),,(= rlm aaaA  and ),,(= rlm bbbB . It can be proved that d̂  is a metric on ZF̂  and so )ˆ,ˆ( dZF  

becomes a metric space. 
 

2.2  Input-Output Relation of Each Unit: 
Let us fuzzify a two-layer feedforward neural network with n  input units and one output unit. Input 

vectors, targets and connection weights are fuzzified (i.e., extended to fuzzy numbers). In order to derive a crisp 
learning rule, we restrict fuzzy weights, real inputs and fuzzy target within triangular fuzzy numbers. 

The input-output relation of each unit of the fuzzified neural network can be written as follows. 
 
Input units:  

.,1,= ,,1,2,=       ,= 1,=0 minjxoo ijiji                                                                                             (3) 

 
Output unit:  
 

,,1,=   ),(= miNetfY ii                                                                                                                              (4) 

 

,= 110 ninii WoWoWNet    

 

where ijx  is a real input and jW  is the fuzzy coefficient weight. 
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2.3  Calculation of Fuzzy Output: 
The fuzzy output from each unit in Eqs.(3)-(4) is numerically calculated for level sets of fuzzy weights and 

real inputs. The input-output relations of our fuzzy neural network can be written for the h -level sets. 
 

Input units: 
 

.,1,= ,,1,2,=       ,= 1,=0 minjxoo ijiji                                                                                            (5) 

 
Output unit:  
 

,,1,=   ),]([=][ miNetfY hihi                                                                                                          (6) 

  

.].[=][
0=

hjij

n

j
hi WoNet   

From Eqs.(5)-(6), we can see that the h -level sets of the fuzzy output iY  is calculated from those of the 
fuzzy inputs and fuzzy weights. The above relations are written as follows. 
 
Input units: 
 

.,1,= ,,1,2,=       ,= 1,=0 minjxoo ijiji                                                                                            (7) 

 
Output unit:  
 

)],]([),]([[=]][,][[=][ U
hi

L
hi

U
hi

L
hihi NetfNetfYYY                                                                             (8) 

 
where f  is an increasing function.  

=]][,][[=][ U
hi

L
hihi NetNetNet  

  

,,1,=   ],].[].[,].[].[[ miWoWoWoWo L
hjij

cj

U
hjij

bj

U
hjij

cj

L
hjij

bj




                                                (9) 

where 0}|{= ijojb , 0}<|{= ijojc  and },{0,= ncb  . 

 
3  The Hyperbolic Regression Model: 

We have postulated that the dependent fuzzy variable ,Y  is a function of the independent real variables 

nxxx ,,, 21  . More formally  

 
,: Ef n R  

 
),,,,(= 21 iniii xxxfY   

 
where i  indexes the observations. 

 
The objective is to estimate a fuzzy hyperbolic regression (FHR) model, express as follows:  

.
1

=
22110 innii

i xAxAxAA
Y

 
                                                                                                                     (10) 

Let nAAA ,,, 10   denote the list of regression coefficients (parameters) where 
nAA ,,1   are weights or 

regression coefficients corresponding to ini xx ,,1  . Then fuzzy hyperbolic regression is given by  

,
1

=
22110 innii

i
xAxAxAA

Y
 

                                                                                                      (11) 
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where i  indexes the different observations and 
nAAA ,,, 10   are fuzzy numbers. We are interested in finding 

nAAA ,,, 10   of fuzzy hyperbolic regression such that 
iY

1  approximates 
iY

1  for all ,,1,2,= mi   closely enough 

according to some norm  , i.e.,  

[0,1],    ,]
1

[]
1

[ ††  h
YY

min h
i

h
i

                                                                                                                     (12) 

 where †  means we have this equation for U  (upper limit) and L  (lower limit) together, independently. Also, 

we use this notation after this, anywhere. Therefore,  

.,1,2,=        )
1

,
1

(ˆ  miallfor
YY

dmin
ii

                                                                                                       (13) 

 Then, it becomes a problem of optimization. 
A 

4FNN  (fuzzy neural network with fuzzy weights, output signals and real inputs) solution to Eq. (11) is 

given in figure 1 . The input neurons make no change in their inputs and the input signals interact with the 
weights, so the input to the output neuron is  

,110 inni xAxAA    

 and the output, in the output neuron, equals its input, so  

.=
1

110 inni
i

xAxAA
Y

   

 
How does the 

4FNN  solve the fuzzy hyperbolic regression? The training data are 

)},,(1,,),,,{(1, 1111 mnmn xxxx   for inputs and target (desired) outputs are 

 . We proposed a learning algorithm from the cost function for adjusting fuzzy number weights. 
Following Section 4 , we proposed a learning algorithm such that the network can approximate the 

fuzzy 
nAAA ,,, 10   of Eq. (11) to any degree of accuracy. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Fuzzy neural network for approximating fuzzy hyperbolic regression.  

 
3.1  Learning Fuzzy Neural Network: 

Consider the learning algorithm of the two-layer fuzzy feedforward neural network with 2 inputs and one 
output as shown in figure 1. Let the h -level sets of the target output miYi ,1,=,   be denoted  

,,1,=    ],][,][[=][ niYYY U
hi

L
hihi                                                                                                                       (14) 

 where )(hY L
i

 shows the left-hand side and )(hY U
i

 the right-hand side of the h -level sets of the desired output. 

A cost function to be minimized is defined for each h -level sets as follows:  
 

,)],,,([)],,,([=)],,,([ 101010
U
hn

L
hnhn WWWEWWWEWWWE                                                                             (15) 

 where  
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The total cost function for the input-output pair )
1

,(
i

i Y
x  is obtained as  

.)],,,([= 10 hn
h

WWWEe                                                                                                                                     (16) 

Hence L
hnWWWE )],,,([ 10   denotes the error between the left-hand sides of the h -level sets of the desired 

and the computed output, and U
hnWWWE )],,,([ 10   denotes the error between the right-hand sides of the h -level 

sets of the desired and the computed output. 
In the research of neural networks, the norm is often defined as follows: 
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Clearly, this is a problem of optimization of quadratic functions without constrains that can usually be 

solved by gradient descent algorithm. In fact, denoting  
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in order to solve Eq. (12), assume k  iterations to have been done and get the thk  iteration point kW . 

REMARK 1. Since the Eq. (17) are quadratic functions, supposing ijo0  for njmi ,0,=,,1,=  , 

we rewrite these as follows:  
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 with †

1=

† ]
1

[=][ h
i

ij

m

ihj Y
ob  . We have  

,][][=)]([ L
h

L
h

L
h BWQWE                                                                                                                                     (18) 

 
 and  
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.][][=)]([ U
h
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h

U
h BWQWE                                                                                                                                     (19) 

 
To find the stationary point of ))]([,)](([=)]([ U

h
L
hh WEWEWE , we should put 

.,0)(0,0,)]([=)]([ TU
h

L
h WEWE   When Q  is positive definite matrices, the stationary point can be obtained 

as follows:  
 

.][=][ †1†*
hh BQW                                                                                                                                                    (20) 

 
The Hessian matrices x this point are  
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which are positive definite matrices because Q is positive definite. From optimization theory, we known that 

)][,][(=)][,]([=][ 11*** U
h

L
h

U
h

L
hh BQBQWWW   , is the unique solution of the problem.  

REMARK 2. The above method is not very convenient in applications. Now we consider its explicit 
scheme. Since L

h
L
h

L
h BWQWE ][][=)]([   and U

h
U
h

U
h BWQWE ][][=)]([  , then L

h
L
hk

L
hk BWQWE ][][=)]([   and 

U
h

U
hk

U
hk BWQWE ][][=)]([  . 

 
Hence we have (Ishibuchi, 1995; Ishibuchi, 2001; Rumelhart, 1986)  
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WEW

WWW





                                                                                                                     (21) 

where k  indexes the number of adjustments and   is a fuzzy learning rate (a positive real number). 

We know that (Li, 2003). 
  

0,=)]([))](([ ††
1 hk

T
hk WEWE  

 

 
therefore we have (Ishibuchi, 1995)  
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Rearranging them, we have:  
 

0.=)]([))]([][)](([ ††††
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T
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From these equations, we can easily get an expression for L

hk ][  and U
hk ][ :  
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 and  
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                                                                                                                      (23) 

 
Substituting these into equations  
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),(=
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


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where k  indexes the number of adjustments and )][,]([= U
hk

L
hkk   is a learning rate, we have the explicit 

scheme  
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 and  
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 We can also obtain similar relations for 0<ijo  for njmi ,0,=,,1,=   and other cases. 

 
4  Algorithm: 
Step 1: Read K (number of iterations), 

jW  (fuzzy weights 
jW  are initialized values), )},,,{( 1 iini Yxx   for 

,,1,2,= mi   (real inputs and fuzzy target output). 

Step 2: Compute U
hn

L
hnhn WWEWWEWWE )],,([)],,([=)],,([ 100   . 

Step 3: Read   (real learning rate) or compute )][,]([= U
hk

L
hkk   is a learning rate. 

Step 4: The fuzzy weight T
n

T WWW ),,(= 0   is updated by the Eq. (21) or Eq. (24). 

Step 5: If Kk <  then 1:= kk  and we continue the training by going back to step 2, otherwise we go to 

step 6 . 
Step 6: The training cycle is completed. 
 
5  Comparison With Other Methods: 

This study would not be completed without comparing it with other existing methods. Some comparisons 
are as follows:   

Mosleh  et al., (2010; 2011) have considered the fuzzy linear regression and fuzzy polynomial regression 
where input units are crisp numbers and output unit is a fuzzy number also Mosleh  et al., (2010) have 
considered the fully fuzzy linear regression, but in this paper we consider fuzzy hyperbolic regression 

,
1

=
22110 innii

i xAxAxAA
Y

 
 where inii xxx ,,, 21   are real numbers and iY  is a fuzzy number.  

In this paper, if we consider fuzzy hyperbolic regression model with 
i

i Y
Z

1
= , from the point of view of 

prediction, we have done this comparison between this paper and (Kao, 2003; Tanaka, 1989) in example 6.1.  
 

6  Numerical Examples: 
To illustrate the technique proposed in this paper, consider the following examples.  

 
Example 6.1. 

Kao et al., and Tanaka et al., (2003; 1989) used an example to illustrate their regression model, in that the 
explanatory variable is crisp and the responses are triangular fuzzy numbers. That example has five sets of the 

),( ii Zx  observations, see table 1. For each fuzzy numbers, we use 11 h-cuts ,1,0,0.1,= h  where we 

calculate the error of each fuzzy output by  

,)][]([
2

1
)][]([

2

1
= 22 U

hi
U
hi

h

L
hi

L
hi

h
iZ

ZZZZe    

and total error by Eq. (16). 
In the computer simulation of this example, we use the following specifications of the learning algorithm. 

(1) Number of input units: 2 units.  
(2)  Number of output units: 1 unit.  
(3)  Stopping condition: K= 8 iterations of the learning algorithm. 

The training starts with )(1,0.5,0.5=(1)0W  and .2)(0.3,0.3,0=(1)1W . Applying the proposed method to the 

approximate solution of problem (11). In symbols, the fuzzy neural network model is:  
 

.,0.1601)(1.71,0.168)8399,1.839(4.9499,1.= 1xZ FNN   
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In the study of Tanaka et al.,(1989) the results of the Min problem of 0=h  is used for comparison. The 
fuzzy regression model is:  

.2.10050,3.850)(3.850,3.8= 1xZ T   

In the study of Kao et al., (2003) the results of the fuzzy regression model is:  
2,2.32).(0.118,2.31.7184.808= 1  xZ K  

 
To compare the performance of these three methods in estimation, we apply to calculate the errors in 

estimating the observed responses. Table 1 shows the errors in estimating the five observation for these three 
methods. The total error of the fuzzy neural network method is 79.0118, which is obviously better than the total 
error of 81.6567 calculated from the Kao method and the total error of 186.8226 calculated from the Tanaka 
method. 
 
Table 1: Numerical data and the estimation errors for example 6.1.  

  Independent   Response   Errors in estimation  
variable  variable  -------------------------- 

            Tanaka          Kao   Neuralnetwork             
 1   (8.0,1.8,1.8)   62.4071      21.2671     19.9084  
2   (6.4,2.2,2.2)   62.4071    21.2671     19.9084  
3   (9.5,2.6,2.6)   10.6631     4.0022     4.0016  
4  (13.5,2.6,2.6)   23.2031    32.1667     32.2214  
5  (13.0,2.4,2.4)   28.1421    2.9535     2.9719  

 Total error     186.8226     81.6567     79.0118  

 
Example 6.2: 

Consider the fuzzy data for a dependent fuzzy variable Y and two independent real variables X1 and X2 in 
table 2. 

Using these data, develop an estimated fuzzy regression equation 
22110

1
=

xAxAA
Y


. 

 
Table 2: Inputs and output data for example 6.2. 

  1x   
 12   7   4   5   2 

 2x   
 7   3   4   8   1 

 Y   (2,1,1)  (0.2,0.1,0.2)   (1,0.5,1)  (0.8,0.2,0.3)  (1.1,0.1,0.1)  

 
In the computer simulation of this example, we use the following specifications of the learning algorithm. 

(1)  Number of input units: 3 units.  
(2)  Number of output units: 1 unit.  
(3)  Stopping condition: K = 15 iterations of the learning algorithm. 

The training starts with (1,1,1)=(1)),(1,0.5,0.5=(1) 10 WW  and 1)0.2,0.1,0.(=(1)2 W . Applying the 

proposed method to the approximate solution of problem (11). Table 3 show the convergence behavior in the15 
iterations. Therefor we have fuzzy regression equation  

.
2,0.634)0.307,0.18(12,0.333)(0.151,0.171,4.986)(2.237,0.8

1
=

21 xx
Y


 

 
Table 3: Numerical results for example 6.2.  

  k   )(0 kW    )(1 kW    )(2 kW  

 1   (1,0.5,0.5)   (1,1,1)   (-0.2,0.1,0.1)  
2  (1.520,1.072,1.006)   (1.094,1.304,1.511)  (-0.194,0.567,0.830)  
3   (1.505,1.529,1.304)   (1.5642,1.113,0.518)  (-0.610,0.586,1.599)  

           

15  (2.237,0.871,4.986)   (0.151,0.112,0.333)  (-0.307,0.182,0.634)  
  

 Summary and Conclusions: 
Solving fuzzy hyperbolic regression (FHR) by using universal approximators (UA), that is, FNN is 

presented in this paper. The problem formulation of the proposed UAM is quite straightforward. To obtain the 
``Best-approximated'' solution of FHRs, the adjustable parameters of FNN are systematically adjusted by using 
the learning algorithm. 
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In this paper, we derived a learning algorithm of fuzzy weights of two-layer feedforward fuzzy neural 
networks whose input-output relations were defined by extension principle. The effectiveness of the derived 
learning algorithm was demonstrated by computer simulation of numerical examples. Computer simulation in 
this paper was performed for two-layer feedforward neural networks using the back-propagation-type learning 
algorithm. 
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