
Australian Journal of Basic and Applied Sciences, 5(10): 956-960, 2011
ISSN 1991-8178

Corresponding Author: Ashraf Abdel-Karim Helal Abu-Ein, Computer Engineering Department, University of Al-Balqa,
Applied, Faculty of Engineering Technology, Amman- Jordan.

 E-mail: dr_ashraf_abuain@yahoo.com
 Tel: +962-777-516494, Fax: +962-6-4894294

956

Using Finite State Machine at the Testing of Network Protocols

1Ashraf Abdel-Karim Helal Abu-Ein, 2Hazem (Moh'd Said) Abdel Majid Hatamleh and
1Ahmed A.M. Sharadqeh

1Computer Engineering Department, University of Al-Balqa’ Applied, Faculty of Engineering

Technology, Amman- Jordan.
2Computer Department, University of Al-Balqa' Applied, Faculty of Ajloun, Ajloun- Jordan.

Abstract: The choice of the finite state machine model use as an initial description of a tested network
protocol is made in this article. The possibility of this model usage for the description of protocol
operation errors is shown. The possible solution of an optimization problem and of a generated test
sequence completeness support is proposed.

INTRODUCTION

 Using new software and, mainly, changing the network protocol generation, such as IPv6, provokes a
necessity to carry out the following sorts of the software testing:
 The conformity test for a compliance with the specification detects.
 The compatibility test for a software interconnection detects.

 There is enough information about the test generation conformity methods for protocols of new generation
IPV6. Thus the main problem consists in necessity of check of new IPV6 protocols compatibility especially
taking into account their new functionality such as mobility, safety and multicast.
 Considering it, we can present in a general way tasks which must be solved for it.
1) The comparative analysis of test generation methods of conformity and compatibility tests for an IPV6

protocols stack, on purpose to select the best among them.
2) The development of the strategy of automatic compatibility tests generation for a stack of IPv6 protocols

considering new functionality, such as mobility, safety and multicast.
3) The analysis of possibility to apply the generated tests to existing protocol stacks and platforms, placing

emphasis on new functionality.

 This approach should allow carrying out modeling of mobile network node migration to inspect tested
implementations.
 Considering inevitable contradictions between a tester functions and a safety principles into IPv6 protocol
implementation, it is necessary to come to the compromise to find the satisfactory solutions allowing a tester to
test sequence for tested system generate, possessing properties of protocols safety support.
 The test of protocols which carry out multicast means of special algorithms application for a tests
generation. It is a question of tests for such tools as a videoconferences or a network TV with multicast using.
The study of such test algorithms for transmission and data flow reception also should become an object of
research.
 The developed system architecture should have the characteristics allowing it to be as much as possible
distributed and "friendly" to any implementation and to any operating system, to possess of a parallelism
properties, etc.
 It is required to solve the task of formalizing of the network protocols (object of testing) representation.
This article is devoted to the first stage, namely, to the analysis of possibility of application of finite state
machines theory for formalizing of tested protocols.

Network Model Based on the Theory of Finite State Machines:
 The most part of a network test researches is devoted to methods based on graph theory, namely, on the
theory of finite state machines (FSM) (Fujiwara et al.,; Stevens, 1996). Below we will present the basic
statements from FSM theory and we will explain its use for the protocol test problem.
 Thus automaton S is presented by following parameter set: a set of states of the automaton (A), a set of
entry events (X), a set of output events (Y), a set of output functions (f) and a set of the automaton transitions
(F). Often, it is set as well an initial status of the automaton (a0). So, we have six parameters which present some
automaton:

Aust. J. Basic & Appl. Sci., 5(10): 956-960, 2011

957

a0 x 1 / y 2

x 3 / y 1

x 1 / y 1

x 2
/ y

 3

x
3

/
y

3

x
1

/
y

1

a2

a1 a3

LISTEN

starting point

CLOSED

passive open

SYN, RCVD SYN, SENT
active open

ESTABLISHED

data transfer state

CLOSING

simultaneous close

FIN_WAIT_1

TIME_WAIT

2MSI, timeout

FIN_WAIT_2

CLOSE_WAIT

LAST_ACK

active close

timeout
send: RST

appl: passive open
send: <nothing>

recv: SYN

send: SYN,ACK
simultaneous open

appl: close
or timeout

appl: close
send: FIN

recv: FIN
send:ACK

recv: ACK
send:<nothing>

recv: FIN
send:ACK

passive close

appl: close
send: FIN

recv: ACK
send:<nothing>

recv: FIN
send:ACK

recv: ACK
send:<nothing>

recv:SYN; se
nd:SYN,ACK

recv:RST

appl: active open

send: SY
N

recv: ACK

send: <nothing> re
cv

l : S
YN, A

CK

se
nd: A

CK

appl: send data

send: SYN

appl: c
lose

send: F
IN

normal transitions for client
normal transitions for server

appl: state transitions taken when application issues operation
recv: state transitions taken when segment received
send: what is sent for this transition

S = {a0, A, X, Y, f, F}.
This model also can be presented in a graph form where: nods are a system states, arcs are transitions from

one system state to another one, entry events provoke the automaton transitions, and output events appear during
these transitions. Here we mean xi as entry words and yj as output words. In a figure 1 the operation of some
network under protocol action is resulted.

Fig. 1: Example of the finite state machine graph model.

 So, using the given description form of the network under action of some protocol, we can present structure
and functioning of some network protocol. For example, in (Castanet, 1994) transition graph of TCPv4 protocol
is given practically in the form of a finite state machine (Fig. 2 below).

Fig. 2: TCPv4 network protocol specification.

Aust. J. Basic & Appl. Sci., 5(10): 956-960, 2011

958

 Having presented the given protocol in a graph form, we will gain the classical Mealy finite state machine
automaton graph (see bellow).
 For this purpose we will rename nods and arcs of the protocol presented in a figure 2 as follows. Under a
nod a1 is implied the CLOSED protocol state (Starting point); a2: LISTEN (Passive open); a3: SYN_RCVD; a4:
SYN_SENT (Active open); a5: ESTABLISHED (Data transfer state); a6: CLOSE_WAIT (Passive close); a7:
LAST_ACK (Passive close); a8: FIN_WAIT_1 (Active close); a9: CLOSING (Active close); a10: FIN_WAIT_2
(Active close). Last state TIME_WAIT corresponds to a state a1 CLOSED (Starting point) and not marked as a
new state. It’ means that after a final cycle the system transfers in an initial state that also corresponds to the
Mealy automaton.
 In a similar way we will treat a protocol transitions from one state to another one. x1: SYN; x2: RST; x3:
ACK; x4: FIN; x5: timeout; х6: appl. We will designate an output words as follows: y1: Passive
Open; y2: Active Open; y3: SYN; y4: ACK; y5: Send Data; y6: FIN; y7: RST. An output word absence we will
designate as (-).

The following finite state machine graph is resulted in figure 3.

Fig. 3: The Transition graph of transport protocol TCPv4.

SDL Model Use:
 The final purpose of our approach is a test sequence generation for the specified network protocol (Schaff
and Nemchenko, 2001). One of stages of this solution is representation of the initial description of the protocol
functioning in the formal language comprehensible to data input in a computer. That is protocol representation
as a finite state machine is the intermediate stage of protocol simulation.
 Our research shows, that one of the most comprehensible and perspective is the specialized language SDL
(Specification and Description Language). This language is based on usage of the finite state machine model as
it is shown in a figure 4, for example.
 This simulation language is presented in a literature completely enough. For example in (Grabowski, 1994;
Baranov, 1997). That is why it is not a subject of this publication.

a1

a2

a5

a1

a4a3

a6

a7a8

a10

x 3
/-

x4/y4

x 6
 /

y 6

x 1x 3
/y 4x

3 /-

x1/y4y5

x 2 /-

x 1/y 3
y 4

x 5
/y

7

x
6 /y

3

x 6
 /-

x
6 / y

3

x
3 x

4 /y
4

a9

x6 /-

x3/-

x 6
/y

6

x4/y4

x 6
/y 6

x4/y4

x 3
/-

Aust. J. Basic & Appl. Sci., 5(10): 956-960, 2011

959

Models of Network Errors:
 Having assumed as a basis representation of network system behaviour on analogies to the theory of
behaviour of finite state machines as it is made in (Baranov, 1997); we can class network system behaviour
errors as follows:
1 Output errors: presents a case when some correct output word yj is substituted by another word yk. At the

same time, transition from the previous state to another one is realized correctly.
2 Transition errors: corresponds to a case when instead of аm - аn, transition under an entry word xi with a

corresponding output word уj, a transition in another state as (not provided) under the influence of the same
entry word xi is carried out.

3 State errors: occurs when a quantity of states specified and the quantity of real states and also its
composition in some implementation of system differs from the protocol specification.

 Model of the protocol implementation with a different type of errors above mentioned is shown at the figure
4.

а) Protocol specification model

b) Protocol implementation model with a different
error types

Fig. 4: The graph model of some network protocol.

 Let some network system can be in one of three states аm, аn, as according to the protocol specification (see
fig. 4). The specification provides the transition from a state аm to a state аn. Also according to the specification
an output word yj appears as a result of such transition provoked by an entry word xi. Let also a transition from
state аm to state аs is carried out under entry word xi and the output word yj is thus worked out (fig. 4, b). We will
note that in this case there is a transition error according to the classification resulted above. On the given model
it is easy to see as well an output error on transition аn - аs (fig. 4, b). One more error type a state error, is shown
also in a figure 4, b. We see here presence of a state ас which has been not provided by the specification of this
protocol.
 It is obvious, that a presented automaton model above can be referred to an automaton of a Mealy type. It is
possible to familiarize with Mealy and Moore automata theory more in detail in (Baranov. 1977) or in paper
«Implementing Mealy and Moore Machines» on page
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Seq/impl.html

Errors Coverage:
 At a graph usage as a finite state machine model for the network protocol description we face a typical
problem of graph coverage. It is obvious, that the problem of errors coverage at usage of the graphic model can
be reduced to the graph coverage problem. That is necessary to solve the problem to pass the graph for
minimum possible number of steps. Thus all nods and all arcs of the graph should be passed at least once. The
optimal test sequence with minimal quantity of test vectors will be as a result gained at sufficient entirety of test
vectors coverage for the tested protocol. This problem is well enough lighted in the literature, for example [8]
and is not a subject of the present article. It is easy to note, that the statement of graph coverage problem is not
new and meets even in Euler's works.

Conclusion:
 As is known, any problem of testing including testing of network protocols is a complex one and consists of
subtasks set. And among them the problem of formalization of a testing object representation is the first. This
research is devoted to justification of a finite state machine model choice and to adapt this model to needs of
network protocol test algorithm. Possibility of the given model usage for the description of a various protocol
functioning errors is besides shown. Also the solution paths of an optimization problem and support of

am

x
i

/
yi

x k
/ y

 p

an

as ac

xk / -

am

x i / y j

x k
/ y

 l

an

as

Aust. J. Basic & Appl. Sci., 5(10): 956-960, 2011

960

generated test sequence entirety are planned. Narrow frameworks of this publication have not allowed to go
deep into consideration of a tests classification problem and the test sequences generation problem, as is a
subject of the further researches in this domain.

REFERENCES

 Baranov, S.I., 1977. Matrix Realization of Control Automata.- Proceedings of the Second International
Symposium on Discrete Systems. Dresden, vol. 2.
 Castanet, R., 1994. Test de protocoles de communication. Réseaux de Communication et Techniques
Formelles. Paris.
 Fujiwara, S., G.V. Bochmann, F. Khendek, M. Amalou, A. Ghedamsi, Test selection based on finite state
models. Université de Montréal. Canada.
 Grabowski, J., 1994. SDL and MSC Based Test Case Generation – An overall view pf the SAMsTaG
method. IAM-94-005.
 Petrenko, A., G.V. Bochmann, 1994. On Fault Coverage of Tests for Finite State Specifications. Montreal
University. Canada.
 Schaff, A., V. Nemchenko, 2001. Test of the new generation internet protocols IPv6. / Radioélectronika i
informatika. - Kharkiv, 1: 87-89.
 SDL Specification and Description Language, 1988. CCITT SG XI, Recommendation Z.100.
 Stevens, W.R., 1996. TCP/IP Illustré. Les Protocoles. Vol. 1. International Thomson Publishing Company.

