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Abstract: This paper describes the method for trajectory tracking and balancing the Self Erecting 
Single Inverted Pendulum (SESIP) using Linear Quadratic Regulator (LQR). A robust LQR controller 
for stabilizing the SESIP is proposed in this paper. The first part of the controller is a Position 
Velocity (PV) controller to swing up the pendulum from its hanging position by moving the 
pendulum left and right repeatedly until the pendulum swings up around the upright position. The 
second part is the stabilization controller which is obtained by the optimal state feedback control law 
determined using LQR to balance the pendulum around upright position. Both the dynamic and 
steady state characteristics of controller are investigated by conducting experiments on linear inverted 
pendulum system and the results are compared with the conventional double PID controller response 
to evaluate the effectiveness of the proposed scheme. Experimental results prove that the LQR 
controller can guarantee the inverted pendulum a faster and smoother stabilizing process with less 
oscillation and better robustness than a conventional double PID controller.  
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INTRODUCTION 
 
 Inverted pendulum is a fourth order, unstable, nonlinear, multivariable, and under actuated system which 
can be treated as a typical control problem to study various modern control theories. It is a well established 
benchmark problem that provides many challenging problems to control design. According to control purposes 
of inverted pendulum, the control of inverted pendulum can be divided into three aspects. The first aspect that is 
widely researched is the swing-up control of inverted pendulum. The second aspect is the stabilization of the 
inverted pendulum (Jia-Jun Wang 2011). The third aspect is tracking control of the inverted pendulum (Wai et 
al. 2006, Chang et al. 2007). In practice, stabilization and tracking control is more useful for plenty of real time 
applications. There are several tasks to be solved in the control of inverted pendulum, such as swinging up and 
catching the pendulum from its stable pending position to the upright unstable position, and then balancing the 
pendulum at the upright position during disturbances, and further move the cart to a specified position on the 
rail. Many approaches for swinging and catching of an inverted pendulum have been proposed in the literature 
(see for instance, Furuta et al.1992, Åström et al. 2000). While controlling a real inverted pendulum, control 
engineers are faced up with several limitations and constraints. One such important limitation is that the rail has 
a limited length and, thus, the cart movement is limited. There are few solutions have been proposed for swing 
up and stabilization of a cart pendulum with a restricted travel. A nonlinear control strategy by decomposing the 
control law into a sequence of steps was proposed in (Wei et al. 1995) and (Chung et al. 1995) proposed a 
nonlinear control state controller that controls the cart position and the swinging energy of the pendulum at the 
same time. An energy based control law that swings up and stabilizes a cart-pendulum system with restricted 
travel and restricted control force was suggested in (Chatterjee et al. 2002). Apart from the control problem of 
the single rod inverted pendulum on a cart system, control aspects of other types like double inverted pendulum 
on a cart, the rotational single-arm pendulum and the rotational two-link pendulum have also been reported in 
the literature (Mason et al. 2008, Tao et. al, 2008). In this investigation, the model of a single rod inverted 
pendulum on a cart system is considered for the development of the proposed control algorithm. The goal of this 
contribution is to implement the target tracking and stabilizing controller for the SESIP based on the control 
concepts of LQR theory. The rest of this paper is organized as follows. The nominal mathematical model of an 
inverted pendulum system obtained from first principles is presented in Section 2. Controller design problem for 
both swing up and stabilization is formulated in Section 3. In section 4, design steps of PV, LQR and PID 
controllers are explained. Experimental results are presented in section 5 and the paper ends with the concluding 
remarks in section 6. 
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System Model: 
 The linear Self Erecting Single Inverted Pendulum (SESIP) consists of a pendulum system which is 
attached to a cart equipped with a motor that drives it along a horizontal track. The schematic diagram of 
inverted pendulum system is shown in Fig. 1. 

 
Fig. 1: Schematic of Cart-Inverted Pendulum. 
 
 The position and velocity of the cart can be changed through the motor and the track restricts the cart 
movement in the horizontal direction. Encoders are attached to the cart and the pivot in order to measure the cart 
position and pendulum joint angle, respectively (M. I Iwan Solihin et al. 2010). The block diagram of the 
overall set up is shown in Fig. 2. 
 
Table 1: List of parameters. 
 
Symbol Description             Value/Unit 
 
R Motor armature resistance                       2.6Ω 
 L Motor armature inductance                 0.18mH 
Kt Motor torque constant       0.00767 Nm/A 
ηm Motor efficiency       100% 
Km Motor EMF constant       0.00767 Ns/rad 
J Rotor moment of inertia         3.9x10-7 kgm2 

Kg Gearbox ratio               3.71 
ηg

  Gearbox efficiency                   100% 
 rm

  Motor pinion radius            6.35x10-3 m 
 rp

  Position pinion radius            1.48x10-2 m 
Beq Equivalent viscous damping 
coefficient at motor             5.4 Nms/rad 
Bp Viscous damping coefficient 
at pendulum pivot             5.4 Nms/rad 
l        Pendulum length from  
pivot to centre of mass                0.3302 m 
I Pendulum moment of inertia   7.88x10-3 kgm2 

Mp  Pendulum mass       0.23kg 
M Cart mass          0.94kg 
Vm Motor nominal input voltage           5V 
 

 
Fig. 2: Pendulum cart system block diagram. 
 
Single Inverted Pendulum Equation of Motion: 
 The schematic diagram and angle definitions of SESIP are shown in Fig. 3. The single inverted pendulum 
(SIP) system is made of a motor cart on top of which pendulum is pivoted. The movement of the cart is 
constrained only in the horizontal x direction, where as the pendulum can rotate only in the x-y plane (A.A. 
Saifizul et al. 2006). The SIP system has two DOF and can be fully represented using two generalized 
coordinates such as horizontal displacement of the cart,  and rotational displacement of pendulum, α. The 
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nominal plant model is obtained with the assumption that the coloumb’s friction applied to the linear cart and 
the force on the linear cart due to the pendulum’s action have been neglected. 

 
Fig. 3: SESIP Schematic. 
 
 A nonlinear equation of motion (EOM) of SIP can be obtained using Lagrange’s equation. 
 

                                   (1) 
 
and  

                                                                                           (2) 
 
 With L  where  is total kinetic energy,  is total potential energy,  and  are the 
generalized force applied on the coordinate  and , respectively. Both the generalized forces can be defined as 
follows 
 

                                                                     (3) 
 
and  
 

                                                                                              (4) 
 
 This energy is usually caused by its vertical movement from normality (gravitational potential energy) or by 
a spring related sort of displacement. The cart linear motion is horizontal and as such, never has vertical 
displacement. So, the total potential energy is fully represented by the pendulum’s gravitational potential 
energy, as characterized below: 
 

                                (5) 
 
 The amount of energy in a system due to its motion is measured by the kinetic energy. Hence, the total 
kinetic energy can be depicted as follows: 
 

                                                                                                  (6) 
 
 Where  and  are the sum of the translational and rotational kinetic energies arising from both the cart 
and its mounted inverted pendulum, respectively. First, the translational kinetic energy of the motorized cart , 
is expressed as follows: 
 

                                                                               (7) 
 
Second, the rotational kinetic energy due to the cart’s DC motor,  , can be represented by: 
 

                                                                          (8) 
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Therefore, the cart’s total kinetic energy, can be written as shown below: 
 

                                                                               (9) 
 

Where  

 The total kinetic energy of the pendulum,  ,is the sum of translational kinetic energy,  and rotational 
kinetic energy,  . 
 

                                                    (10) 
 
Where . From Figure  and  can be expressed as: 
 

                                                  (11) 
 
and 
 

                                                        (12) 
 
Substituting (22), (23),(24),(25) into (19), gives the total kinetic energy,  of the system as: 
 

 

                                      (13) 
 
The lagrangian can be expressed using (18) and (26) 
 

 
                (14) 

 
From equation (14) and (15), the non linear equation of motion can be obtained as: 
 

               (15) 
 
and 
 

                          (16) 
 
 The nonlinear model can be linearized which is valid near the equilibrium point (upright pendulum) so that 
sin(α) , cos(α)  and also neglecting higher order term. The linearized model is written in state space in 
order to allow the design of state feedback controller for upright pendulum stabilization. 
 

                             (17) 
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The state model of the system obtained by substituting the parameters presented in Table 1 is given as: 
 

              (18) 

 

                                         (19) 

 
 The eigen values of the system matrix are -16.2577,   -4.5611, 0, 4.8426. It can be clearly seen that the open 
loop system has one pole in the Right Half Plane (RHP) i.e., positive pole. Therefore the system is unstable in 
open loop. As a consequence, in order to maintain the pendulum balanced in the inverted position, a controller is 
to be designed such that all the resulting closed loop poles lie in the Left Half Plane (LHP). 
 
Formulation of Controller Design Problem: 
 The controller design for the inverted pendulum system is broken up into two components. The first part 
involves the design of a swing up controller that swings the pendulum up to the unstable equilibrium. The 
second part involves the design of an optimal state feedback controller for the linearized model that will 
stabilize the pendulum around the upright position. When the pendulum approaches the linearized point, the 
control will switch to the stabilizing controller which will balance the pendulum around the vertical position.  

 
 
Fig. 4: Control scheme of inverted pendulum. 
 
 The control scheme of SESIP consists of two main control loops and decision making logic to switch 
between the two control schemes. The control scheme of the inverted pendulum is shown in Fig. 4. One control 
loop is a PV controller on the cart position that follows a set point designed to swing up the pendulum from the 
suspended to the inverted posture. The other control loop is active when the pendulum is around the upright 
position and consists of a Linear Quadratic Regulator maintaining the inverted pendulum in vertical position.  
 
LQR Design Specification: 
 The primary objective of the LQR scheme is to catch, in a first time, “swing-up” pendulum and then to 
maintain it balanced in the inverted posture. The linear cart should track a desired (square wave) position set 
point and at the same time the controller should also minimize the control effort. The purpose of optimal control 
is to allow for best tradeoff between performance and cost of control. The gain of the LQR scheme is tuned to 
control the inverted pendulum and linear cart system to satisfy the following design requirements. 
1. The pendulum angle should be regulated around its upright position and never exceed a  degree 
deflection. 
2. Rise time 2s 
3. Control effort Vm should be minimum and is not allowed to reach the saturation level. 
 
Controller Design: 
PV Controller: 
 This controller aims at swinging up the pendulum from rest (θ=1800=-1800) while keeping the cart travels 
within the limited horizontal distance. Many different control algorithms can be used to perform the swing up 
control such as, trajectory tracking, rectangular reference input swing up type and Pulse Width Modulation 
(PWM), in a controlled manner that the energy is gradually added to the system to bring the pendulum to the 
inverted position. In this work, a PV controller is used because of its simple structure, effectiveness and easy 
tuning. The block diagram representation of swing up controller is shown in Fig. 5. The proportional velocity 
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position controller for servo plant introduces two corrective terms. One is proportional (Kp_c) to the cart position 
error while the other is proportional (Kd_c) to the cart velocity. The resulting PV control law is given as: 
 

                   (20) 
 

 
 
Fig. 5: Block diagram of PV controller. 
 
The closed loop transfer function of the cart servo can be expressed as: 
 

                            (21) 

 
This leads to a second order system as follows: 
 

                           (22) 

 
 The desired performance is ζ=0.59 and ω=26 rad/s. Comparing characteristic equation in (19) with the 
standard second order form: 
 

                            (23) 
 
the PV controller gains are obtained as  and . 
 
Switching Algorithm: 
 A transition algorithm is designed to switch from swing-up controller to stabilizing controller. This is 
performed by smooth conditional switching that can be expressed as  follows: 
If |α|>250, only swing-up control is active. 
If |α|<200, only stabilizing control is active. 
If 200 ≤|α|≤250, swing-up and stabilizing control signal are averaged/weighted. The last condition is made as 
transition region to avoid what known as hard switching. 
 
LQR Controller: 
 The LQR method is a powerful technique for designing controllers for complex systems that have stringent 
performance requirements and it seeks to find the optimal controller that minimizes a given cost function 
(Aamir et al. 2010). The cost function is parameterized by two matrices, Q and R, that weight the state vector 
and the system input respectively. LQR method is based on the state-space model and to find the control law, a 
matrix Riccati equation is first solved, and an optimal feedback gain, which will lead to optimal results 
evaluating from the defined cost function (performance index), is obtained. In this paper, the state feedback 
controller is designed using the linear quadratic regulator and the linear model of the system. Briefly, the 
LQR/LTR theory says that, given a nth order stabilizable system 
 

                        (24) 
 
 Where  is the state vector and u(t) is the input vector, determine the matrix such that the 
static, full state feedback control law, 
 

                                           (25) 
 
satisfies the following criteria, 
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a. the closed-loop system is asymptotically stable 
b. the quadratic performance functional 
 

                          (26)  
 
is minimized. Q is a nonnegative definite matrix that penalizes the departure of system states from the 
equilibrium and R is a positive definite matrix that penalizes the control input (Desineni et al, 2003). The 
solution of the LQR problem can be obtained via a Lagrange multiplier based optimization technique and is 
given by 
 

                                                                     (27) 
 
Where P  is a nonnegative definite matrix satisfying the matrix Riccati Equation, 
 

                                         (28) 
 
 Given the plant (37) and the performance index (39), the following LQR design algorithm is used to 
determine the optimal state feedback. 
Step 1: Solve the matrix algebraic Riccati equation (ARE) 
 

                         (29) 
 
Step 2: Determine the optimal state x*(t) from 
 

                                 (30) 
 
with initial condition  
Step 3: Obtain the optimal control u*(t) from 
 

                            (31) 
 
Step 4: Obtain the optimal performance index from 
 

                            (32) 
 
 The weighting matrices Q and R are important components of an LQR optimization process. The 
compositions of Q and R elements have great influences on system performance. Different approaches have 
been suggested for the selection of weighting matrices. In this work, for the selection of weighting matrices 
Bryson’s rule is followed (Omer et al. 2010). A reasonable simple choice for the matrices Q and R by Bryson’s 
rule is given by 
 

                          (33) 
 

                                     (34) 
 
 The number of elements of Q and R matrices are dependent on the number of state variable (n) and the 
number of input variable (m), respectively. The diagonal-off elements of these matrices are zero for simplicity. 
If diagonal matrices are selected, the quadratic performance index is simply a weighted integral of the squared 
error of the states and inputs. 
 
PID Controller Design: 
 In this section the design of PID controller for stabilizing the inverted pendulum is presented in order to 
make a comparison between the performances of proposed LQR and PID controllers. Several methods have 
been proposed to control the inverted pendulum, such as traditional PID control, fuzzy control and genetic 
algorithm optimizing control. Although a lot of control algorithms are researched in the designing of the 
inverted pendulum system controller, PID controller is still the most widely used controller structure in the 
realization of a control system. However, the inverted pendulum system is a one input and two output system 
which contradicts to the one input and one output control characteristic of the single PID controller (Wende et 
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al. 2012). The steady state error of the pendulum angle using single PID controller results in the one direction 
displacement of the cart. The displacement of the cart cannot be controlled very well because the PID controller 
can control only one variable, and the cart position control problem is ignored and only pendulum angle is 
focused. So the double PID control structure is used to solve the multi-output problem. Block diagram of the 
designed double-PID control method is shown in Fig. 6. 

 
Fig. 6: Block diagram of double PID control method. 
 
 PID–I controls the cart position and PID-II controls the pendulum angle. The output of both the PID 
controllers are summed together to produce a control input to the pendulum system. Using Ziegler-Nichols 
technique, the parameter values of both the PIDs are determined. The control parameters are [Kpp=40, Kpi=25, 
Kpd=20; Kap=60, Kai=85, Kad=9].  
 
Experimental Results: 
 In order to show the practical effectiveness of the proposed scheme, experiments are conducted using 
Quanser IP-02 inverted pendulum system. The snapshot of the experimental set up is shown in Fig. 7. Firstly, 
the experimental results of two phases of swing up and stabilizing modes are presented. Secondly, the 
performance of robust LQR controller design is compared with a double PID controller performance. Real time 
experiment configuration consists of computer with MATLAB, Simulink, Q8 data acquisition board and 
Quanser IP02 Linear inverted pendulum module. Some hardware limitations are considered in the controller 
design for the pendulum system. The Digital-to-Analog voltage for data acquisition board is limited between -10 
V and 10 V. The safety watchdog is turned on where the allowable cart displacement is 0.35 m from the centre 
of the track. When the pendulum or cart touches the limit switch, the control process is aborted. The Simulink 
block diagram of the overall control design is shown in Fig 8. 
 

 
 
Fig. 7: Snapshot of experimental setup. 
 
 The controller gains of a state feedback controller are determined using the weighting matrices of linear 
quadratic regulator. The following weighting matrices are selected based on Bryson’s rule for the calculation of 
gain K. 
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 Using the system model from (31) and the above weighting matrices, the state feedback controller gains 
obtained for robust LQR controller is 
 

 
 
 Fig. 9 shows the output of the swing up controller which is able to bring the pendulum to upright position in 
approximately 7 sec. The swing up controller takes approximately 12 swings before the pendulum reaches close 
to vertical position. The velocity of the pendulum angle reaches the maximum value of 650deg/s to -650deg/s 
during swing up phase as shown in Fig. 10. 
 

 
Fig. 8: Pendulum angle during swing up phase.   Fig. 9: Pendulum Velocity. 
 
 During the swing up phase, the control signal is larger than the control signal in the stabilizing mode. This 
is relevant because large amount of energy is required to swing the pendulum from downward position to its 
upright position and the small amount of energy is only required to stabilize the pendulum. The control signal 
applied to the cart is shown in Fig. 11. Even though the initial control signal during swing up phase reaches the 
maximum saturation level, the magnitude of control voltage to the motor is reduced well below 3.3V after the 
pendulum reaches the upright position. The control input varies between 3.25V to -3.25V after the swing up 
phase. The control output begins to decrease when the pendulum is close to the upright position because the 
control output is based on the difference between the energy of the system and the desired value. 
 

 
Fig. 10: Control Signal.      Fig. 11: Cart Position. 
 
 The trajectory tracking ability of the controller in the form of cart position response for the given square 
wave reference signal is shown in Fig. 12. From Fig. 12, it is observed that the overshoot of the system is less 
than 5 percentage, which satisfies the performance criteria mentioned in the controller specification.  
 
Disturbance Rejection: 
 The disturbance rejection ability of the controller strategy is explained in this section. After the pendulum 
swing up and stabilization phase, disturbance is introduced into the pendulum at 15 second as shown in Fig. 13. 
The zoomed view of angle response is shown in Fig. 14 to highlight the magnitude of deviation in angle. The 
magnitude of pendulum angle deviates to 4 deg when the disturbance signal is introduced. Furthermore, as seen 
in Fig. 15 the magnitude of corresponding control signal applied to cart during disturbance varies between -6V 
to 6Vwhich is lesser than the saturation value given in the controller specification. 
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Fig. 12: Pendulum Angle with external disturbance.   Fig. 13: Control signal applied to cart. 

 
Fig. 14: Pendulum velocity.     Fig. 15: Zoomed view of pendulum velocity. 
 
 Fig. 16 and 17 show the pendulum angle velocity and zoomed of the same during external disturbance, 
respectively. The controller is able to reduce the oscillation in less than 2 seconds which makes the pendulum to 
maintain its upright position to track the given signal. 
 
Dynamic Performance Assessment of LQR and PID Controllers: 

 
Fig. 16: Cart position response.     Fig. 17: Pendulum angle response. 
 
 Dynamic performance indices such as rise time, settling time and overshoot are chosen to evaluate the 
performance of both LQR and PID controllers for the response of cart position and pendulum angle. Fig. 19 and 
Fig. 20 show the response of cart position and pendulum angle, respectively. Based on the performance indices 
tabulated in Table 2 and Table 3, it is worth to note that the LQR controller has less rise time and reaches the set 
point quickly compare to conventional double PID. It is also characterized by a reduced overshoot and short 
delay time. In summary, for dynamic response, the inverted pendulum controlled by LQR controller 1) balances 
faster because of the shorter settling time; 2) has better robustness due to less maximum overshoot. So, the LQR 
controller can guarantee the inverted pendulum system a better dynamic performance than a conventional 
double PID. 
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Table 2: Performance Indices of Cart position. 
Time domain parameter PID LQR 

Rise Time (sec) 2.1 1.6 
Settling Time (sec) 5.1 2.7 

Overshoot (percentage) 15 8 
 
Table 3: Steady state performance of PID and LQR controller. 

Performance Index PID LQR 
Pendulum angle oscillation amplitude 1.8 deg 0.3deg 
Pendulum angle oscillation frequency 0.55Hz 0.43Hz 

 
Conclusion: 
 A complete design and implementation of robust LQR controller to stabilize the inverted pendulum in the 
upright position has been described in this paper. A linear model of the SESIP has been obtained using Euler-
Lagrange energy based method. The optimal weights of LQR controller have been obtained to tune the 
controller output which in turn modifies the output to satisfy the design criteria. The robustness property of the 
controller has been demonstrated by maintaining the pendulum angle with reduced oscillation when the 
disturbance is introduced into the system. Experimental results show that the steady state performance of the 
proposed LQR controller has smaller oscillation amplitude than that of the double PID controller. The control 
scheme not only had good dynamic performance, but also had robustness to external disturbance. As a future 
work, further improvement can be made on the LQR controller design by considering friction compensation to 
further reduce the oscillation amplitude and frequency. 
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	Fig. 7: Snapshot of experimental setup.
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	Conclusion:
	A complete design and implementation of robust LQR controller to stabilize the inverted pendulum in the upright position has been described in this paper. A linear model of the SESIP has been obtained using Euler-Lagrange energy based method. The opt...
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