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 This paper presents a steady two-dimensional boundary layer flow and heat transfer of 

a Jeffrey fluid over a stretched sheet with non-uniform heat source/sink. The governing 

equations that govern the fluid flow and heat transfer are solved using the Keller-box 

method after being reduced to a set of non-linear ordinary differential equations by a 
similarity transformation. The effects of Deborah number β, Eckert number Ec, Prandtl 

number Pr and non-uniform heat source/sink parameters A*, B* on the flow and heat 

transfer characteristics are investigated. 
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INTRODUCTION 

 

  In industry processes, such as paper production, 

hot rolling, polymer extrusion and drawing of plastic 

films, the final product depends on the rate of 

stretching and heat transfer. Sakiadis (1961) was the 

first to study flow induced by a moving surface and 

Crane (1970) examined flow generated by a linearly 

stretching sheet. Industrially, the flow of non-

Newtonian fluid over stretching sheet has become 

more and more important. This is due to the fact that 

Newtonian fluid flow alone is inadequate to describe 

fluids with long chains of molecules that contain fine 

particles. There are a few constitutive equations of 

non-Newtonian fluids, available in related literature, 

that are complicated and much more non-linear than 

those of viscous fluid. One of them is the Jeffrey 

fluid, which is a relatively simpler linear model using 

time derivatives instead of convected derivatives 

used by most fluid models. Many researchers have 

conducted experiments using only flow on a 

stretching sheet or a combination of various effects 

on a stretching sheet. Hayat et al. (2012) investigated 

three-dimensional flow of a Jeffrey fluid over a 

linearly stretching sheet and Qasim (2013) 

investigated the combined effects of heat and mass 

transfer in Jeffrey fluid over a stretching sheet in the 

presence of heat source/sink. The unsteady flow and 

heat transfer of Jeffrey fluid over a stretching sheet 

was conducted by Hayat et al. (2014) and recently, 

Ahmad and Ishak (2015) studied MHD flow and heat 

transfer of a Jeffrey fluid towards a stretching 

vertical surface. 

 In view of several physical problems, such as 

fluids undergoing exorthemic and endothermic 

chemical reactions, the study of heat generation or 

absorption has gained considerable attention. The 

existence of significant temperature differences 

between the surface and ambient fluid necessitates 

the consideration of temperature-dependent heat 

sources or sinks, which may exert strong influence 

on heat transfer characteristics (Vajravelu and 

Nayfeh, 1992). Although the exact modelling of 

internal heat generation or absorption is difficult, 

some simple mathematical models can express its 

average behavior for most physical situations (Abo-

Eldahab and El Aziz 2004). The idea by Abo-

Eldahab and El Aziz (2004) introducing non-uniform 

heat souce/sink 
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 Incorporated the effects of the space dependent 

of the internal heat generation or absorption, which is 

given by the first term, in addition to the 

temperature-dependent heat source/sink, given by 

latter term. Abel and Nandeppananvar (2009) 

presented the study of MHD viscoelastic boundary 

layer flow over a stretching sheet with non-uniform 

heat source/sink and Aurangzaib and Shafie (2012) 

discussed the effects of heat and mass transfer in a 

MHD non-Darcian flow of a micropolar fluid over an 

unsteady stretching sheet with thermophoresis and 

non-uniform heat source/sink. Zheng et al. (2013) 
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presented an analysis for the unsteady mixed 

boundary layer flow and radiation heat transfer of 

generalised Maxwell fluids towards an unsteady 

stretching permeable surface in the presence of 

boundary slip and non-uniform heat source/sink. 

Recently, Dessie and Kishan (2015) investigated the 

unsteady MHD flow of heat and mass transfer of 

nanofluid over stretching sheet with a non-uniform 

heat source/sink considering viscous dissipation and 

chemical reaction. 

 Based on our close observations, no study has 

been made for Jeffrey fluid flow and heat transfer 

over a stretching sheet with non-uniform heat 

source/sink. However, the effect of heat source/sink 

has been conducted by Qasim (2013). 

 

Analysis: 

 Consider the steady two-dimensional laminar 

boundary layer flow of an incompressible Jeffrey 

fluid flow over an impermeable flat sheet coinciding 

with the plane y = 0 with the flow being confined to y 

> 0.  The flow is generated by stretching the sheet 

away from the leading edge with linear velocity  

xaxu
w

)(  where a is a positive constant.  The x-

axis runs along the stretching sheet in the direction of 

motion, while the y-axis is taken as normal to the 

sheet. Under these assumptions and the usual 

boundary layer assumptions, the boundary layer 

equations governing the flow motion are (Qasim 

2013)  
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 subject to the boundary conditions                                 
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 where u and v are velocity components in the x 

and y directions, respectively.   is the kinematic 

viscosity, 
1


 
is the ratio of relaxation and retardation 

times and 
2


 
is the relaxation time.   

 To get the effect of the temperature difference 

between the surface and the ambient fluid, heat 

transfer analysis is performed. The energy is 

considered to be stored in the fluid by means of 

frictional heating due to viscous dissipation, and the 

temperature is considered to depend on heat 

source/sink throughout the flow. Further, the plate is 

assumed to have a temperature distribution in the 

quadratic form 
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at y = 0. 

Therefore, the thermal boundary layer under 

consideration is given by (Abel et al. 2007) 
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 subject to the following boundary conditions 
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 Here, k is the thermal conductivity, μ is the 

dynamic viscosity, cp is the specific heat at constant 

pressure, T is the fluid temperature and q  is the 

space and temperature dependent internal heat 

generation/absorption (non-uniform heat 

source/sink), which is  given as (Abo Eldahab and El 

Aziz 2004, Abel et al. 2007, Zheng et al. 2011) 
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 where A
*
 and B

*
 are parameters of the space and 

temperature dependent on internal heat 

generation/absorption. The case A
* 

> 0 and B
* 

> 0 

corresponds to the internal heat source while A
* 

< 0 

and B
* 
< 0 corresponds to internal heat sink.  

 The second term on the right side of Eq. (4) is 

the viscous dissipation term, which is always positive 

and represents a source of heat due to friction 

between the fluid particles.  

 Eqs. (1), (2) and (4), subject to the boundary 

conditions (3) and (5), can be solved by introducing 

the following similarity transformation  
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 where η is the similarity variable, f is the 

dimensionless stream function, θ is the dimensionless 

temperature, ψ is the stream function defined in usual 

way as yu  /
 
and xv  / . Thus, we 

have  
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 where prime denotes differentiation with respect 

to  . Using (7) and (8), Eq. (1) is trivially satisfied, 

while Eqs. (2) and (4) are reduced to  

     ,01 22

1
 ivfffffff        (9) 

  ,0PrPr2Pr *2*  fAfEcfBf 

                           (10)                   

 and the transformed boundary conditions (3) and 

(5) can be written as  
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 where
2

 a  is the Deborah number, 
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 The physical quantities of interest are the skin 

friction coefficient 
f

C  and the local Nusselt number 

x
Nu , which are defined as 
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 where 
w  is wall shear stress and 

wq is the heat 

flux from the surface, which are given by  

,,
y

T
kq

y

u
ww









              

(13)
 
 

 with μ and k being the dynamic viscosity and the 

thermal conductivity. Substituting (7) and (8) into 

(12), the scaled skin friction coefficient and the local 

Nusselt number are reduced to  
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 where /Re xu
wx

  is the local Reynolds 

number.  

 

 

RESULTS AND DISCUSSION 

 

 Eqs. (9) – (10), subject to the boundary 

conditions (11), have been solved numerically using 

a finite-difference method, namely the Keller-box 

method, for some arbitrary values of the Jeffrey fluid 

parameter  , the Prandtl number Pr, the Eckert 

number Ec, the value of the space dependent heat 

source/sink parameter A
*
 and the value of the 

temperature dependent heat source/sink parameter B
*
 

with the ratio of the relaxation and retardation times 

1
  held fixed (=0). In order to validate the numerical 

code used, the results obtained for θ’(0) when β = Ec 

= A
*
 = 0 are compared with those reported by Tsai et 

al. (2008) when S = A
*
 = 0 in their paper, and it is 

found that the calculations are in good agreement, as 

shown in Table 1.  Nevertheless, the values of 

)0(f  remain constant at -1.000035 due to fact that 

the values of B
*
 and Pr only affect the thermal flow.  

Table 1: Numerical output obtained for local Nusselt number θ’(0) when β = Ec = A* = 0 

B* Pr Tsai et al. (2008) Present results 

-1 1 -1.710937 -1.710935 

-2 2 -2.485997 -2.486000 

-3 3 -3.028177 -3.028180 

-4 4 -3.585192 -3.585187 

-5 5 -4.028540 -4.028552 

 

 The velocity profile f ‘(η) is plotted for various 

values of β, as depicted in Fig. 1. The graph is valid 

for any values of the A*, B*, Pr and Ec numbers. 

This is clear from Eqs. (9)-(10), which show that 

those parameters are independent of the velocity field 

and more pronounced to the thermal field. As such, 

various results are expected for the heat transfer 

rather than the skin friction at the boundary for 

various values of the A*, B*, Pr and Ec numbers. 

The effect of the Deborah number β on the fluid flow 

can be seen in  Fig. 1, which shows that the velocity 

and the boundary layer thickness are increasing 

functions of the Deborah number β.  
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Fig. 1: Velocity profile f ‘(η) for various values of β. 

 

 Fig. 2 presents the graph of the temperature 

profiles for a few values of A*, B* and β when Pr = 

6.8 and Ec = 1. It is observed that an increment of the 

Deborah number β decreases the temperature within 

the boundary when the flow is generated by the heat 

sink (A*, B* < 0). However, for A*, B* > 0, obvious 

changes of temperature are observed at the beginning 

of the formation of the boundary layer as β changes 

from 0 to 1. Initially, the temperature for β = 0 is 

slightly higher compared with β = 1 and, after 

reaching a certain thickness, the temperature behaved 

reversely. For fixed β, it is noticed that the boundary 

layer absorbs the energy, which causes the 

temperature profiles to fall with the decreasing 

values of A*, B* (heat sink) whereas for A*, B* > 0 

(heat source), the boundary layer releases the energy, 

resulting in the rise in temperature.     

 The temperature profiles for flow generated by 

heat absorption (A*, B* = -1) and heat generation 

(A*, B* = 1) are depicted in Figs. 3(a) and (b), 

respectively, for Pr = 1, 10, 100. Both of the graphs 

reveal that the temperature slowly decreases until it 
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reaches a certain thickness and gradually goes to 0 at 

the outside of the boundary layer.  However, the 

phenomenon is not valid for flow generated by heat 

source (A*, B* = 1) when Pr = 1. It is found that that 

a peak is formed at the beginning of the development 

of the boundary layer and subsides after reaching a 

certain level of thickness. 

 

 
 

Fig. 2: Temperature profile θ(η) for various values of A*, B* and β. 
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Fig. 3: Temperature profile θ(η) for various values of Pr number when β = Ec = 1 for (a) A*, B* = -1 and (b) 

     A*=B* = 1. 

 

 The effect of the Ec number towards the 

distribution of the temperature in the boundary layer 

are displayed in Fig. 4. Both of the flows, which are 

generated by heat source/sink, agree that the effect of 

the Ec number is an increase in temperature 

distribution in the flow region. This is due to the fact 

that heat energy is stored in the liquid due to 

frictional heating, which causes an increment in 

temperature at any point on the thermal boundary 

layer (Pal and Mondal 2012). For high Ec numbers 

(Ec = 10), an overshoot in the temperature is formed 

at the beginning of the flow motion for both heat 

source/sink.  

 The effect of the Deborah number β when Pr = 

6.8 and Ec = 1 are depicted in Fig. 5 for various 

values of A* when B* = -1 and 1, and Fig.6 for 

several values of B* when A* = -1 and 1.  From Fig. 

5, it is seen that the Nusselt number decreases as A* 

increases. Also, it is clear that for fixed A*, the heat 

transfer at the boundary is found to increase with the 

increment of β. However, the heat transfer is found to 

be smaller for B* = 1 as compared with   B* = - 1 at 

fixed A* and β.  The same trend is observed for fixed 

B* and β, as described in Fig. 6.  

 Fig. 7 is plotted to examine the effect of the Pr 

number when A* = B* = ± 1 and Ec = 1 for 

Newtonian and non-Newtonian fluid. It reveals that 

the heat transfer rate on the surface increases as Pr 

increases for both flows generated with heat source 

(A*= B* > 0) and heat sink (A* = B* < 0). The 

introduction of the non-Newtonian fluid to the flow, 

namely the Jeffrey fluid, which is given by the 

Deborah number β, is found to increase the heat 

transfer rate at the surface for both flows generated 
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by heat source/sink. However, the heat rate is more 

pronounced for flows with a high Pr number (Pr >> 

7) as compared with Pr = 2.  
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Fig. 4: Temperature profile θ(η) for various    values of Ec number when β = 1,  Pr  = 7 for A*, B* = -1 and (b) 

    A*=B* = 1 

 

 
 

Fig. 5: The variations of local nusselt number–θ ’ (0) for various values of  β and A*  when Pr = 6.8 and Ec = 1 

      for B
*
 = 1 and -1, respectively. 

 

 
 

Fig. 6: The variations of local nusselt number –θ ’ (0) for various values of  β and B*  when Pr = 6.8 and Ec = 1 

      for A
*
 = 1 and -1, respectively. 

 

 Fig. 8 displays the effect of the Ec number and 

Pr number for few values of the Deborah number β 

when A* = B* = 0.2 (heat source) towards the heat 

transfer rate, -θ’ (0). It is observed that for Ec >> 5, 

the heat transfer rate decreases as Pr increases. 

However, an opposite trend is observed when Ec = 1, 
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as depicted in Fig. 3. Further, the Nusselt number is 

an increasing function of Deborah number β as Pr 

increases for a fixed value of the Ec number, which 

is in line with the result reported in Fig. 7.   

 

 
 

Fig. 7: The values of  -θ’(0) with Deborah number, β when Ec =1 for various values of Pr. 

 

 
 

Fig. 8: The values of  -θ’(0) with Pr number when A* = B* = 0.2 for various values of Ec number and  Deborah 

     number β. 

 

Conclusion: 

 Jeffrey fluid flow and heat transfer over a 

stretching sheet with non-uniform heat source/sink 

with viscous dissipation is studied. Keller-box 

method is used to solve the governing boundary layer 

equations. A few graphs are depicted for the skin 

friction coefficient and the local Nusselt number, 

along with velocity and temperature profiles, taking 

the effects of the Deborah number β, Eckert number 

Ec, Prandtl number Pr and the heat source/sink 

parameter A* and B*. The results indicate that the 

heat transfer rate at the surface decreases for flow 

generated by heat source compared with flow 

generated by heat sink.  However, the introduction of 

Jeffrey fluid to the fluid flow is found to increase the 

local Nusselt number.  
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